ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Rapid and Stereoselective Synthesis of
Spirocyclic Ethers via the Intramolecular
Piancatelli Rearrangement
Leoni I. Palmer and Javier Read de Alaniz*
Department of Chemistry & Biochemistry, University of California, Santa Barbara,
California 93106-9510, United States
Received November 27, 2012
ABSTRACT
The first example of a Piancatelli rearrangement of alcohols is demonstrated utilizing dysprosium(III) triflate as a catalyst to access
oxaspirocycles in a highly diastereoselective manner. The cascade reaction constructs the spirocyclic ether ring system and the tertiary
stereocenter in a single operation and is experimentally easy to perform.
Oxabicycles represent an important class of compounds
in organic synthesis, and they have served as key inter-
mediates in the total synthesis of numerous biologically
active molecules (Figure 1), such as grindelic acid (1),1
heliespirones B (2) and C (3),2 ophiobolin A (4),3 and
sieboldine A (5).4 Within the oxabicycle family, spirocyclic
ethers (6) represent one of the most challenging structural
motifs to access. To overcome synthetic challenges asso-
ciated with their synthesis a number of strategies have been
developed.5 Generally, the routes rely on a two-step pro-
cess where the tertiary carbon center and the spirocycle
are formed in separate, discrete steps. An especially direct
way to construct this motif would be to combine the
construction of the ether and the formation of the spir-
ocyclic ring system in a single operation using a cascade
reaction. Despite the potential, this strategy remains large-
ly unexplored.
Recently, we developed an intramolecular cascade re-
arrangement of 2-furylcarbinols to provide direct access to
azaspirocycles, based on the aza-Piancatelli reaction (eq 1).6
We recognized that the ability to employ alcohols in the
intramolecular rearrangement of 2-furylcarbinols would
provide an attractive alternative to stepwise spirocyclic
ether synthesis. In addition, it would provide a platform
to further expand the synthetic utility of the Piancatelli
rearrangement, since there are no examples with alcohol
(5) For select examples, see: (a) Ireland, R. E.; Maienfisch, P. J. Org.
Chem. 1988, 53, 640. (b) Middleton, D. S.; Simpkins, N. S.; Begley, M. J.;
Terrett, N. K. Tetrahedron 1990, 46, 545. (c) Negri, J. T.; Paquette, L. A.
J. Am. Chem. Soc. 1992, 114, 8835. (d) Paquette, L. A.; Tae, J. J. Org.
Chem. 1996, 61, 7860. (e) Haddad, N.; Rukhman, I.; Abramovich, Z.
J. Org. Chem. 1997, 62, 7629. (f) Young, J.-J.; Jung, L.-J.; Cheng, K.-M.
Tetrahedron Lett. 2000, 41, 3415. (g) Jones, K.; Toutounji, T. Tetra-
hedron 2001, 57, 2427. (h) Teng, X.; Cefalo, D. R.; Schrock, R. R.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 10779. (i) Alonso, F.;
Melendez, J.; Yus, M. Russ. Chem. Bull. 2003, 52, 2628. (j) Noguchi, N.;
Nakada, M. Org. Lett. 2006, 8, 2039. (k) Adrien, A.; Gais, H. J.; Kohler,
F.; Runsink, J.; Raabe, G. Org. Lett. 2007, 9, 2155. (l) Zhang, Q.-W.;
Fan, C.-A.; Zhang, H.-J.; Tu, Y.-Q.; Zhao, Y.-M.; Gu, P.; Chen, Z.-M.
Angew. Chem., Int. Ed. 2009, 48, 8572.
(1) (a) Panizzi, L.; Mangoni, L.; Belardini, M. Tetrahedron Lett.
1961, 2, 376. (b) Paquette, L. A.; Wang, H.-L. Tetrahedron Lett. 1995,
36, 6005.
(2) (a) Macias, F. A.; Galindo, J. L. G.; Varela, R. M.; Torres, A.;
Molinillo, J. M. G.; Fronczek, F. R. Org. Lett. 2006, 8, 4513. (b) Jiao,
Z.-W.; Zhang, S.-Y.; He, C.; Tu, Y.-Q.; Wang, S.-H.; Zhang, F.-M.;
Zhang, Y.-Q.; Li, H. Angew. Chem., Int. Ed. 2012, 51, 8811.
(3) (a) Ishibashi, K.; Nakamura, R. J . Agric. Chem. Soc. Jpn. 1958,
32, 739. (b) Kobayashi, S.; Kinoshita, T.; Kawamoto, T.; Wada, M.;
Kuroda, H.; Masuyama, A.; Ryu, I. J. Org. Chem. 2011, 76, 7096.
(4) (a) Hirasawa, Y.; Morita, H.; Shiro, M.; Kobayashi, J. I. Org.
Lett. 2003, 5, 3991. (b) Canham, S. M.; France, D. J.; Overman, L. E.
J. Am. Chem. Soc. 2010, 132, 7876.
(6) Palmer, L. I.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2011, 50,
7167.
(7) (a) Piancatelli, G.; Scettri, A.; Barbadoro, S. Tetrahedron Lett.
1976, 17, 3555. (b) Piancatelli, G.; Dauria, M.; Donofrio, F. Synthesis
1994, 867.
r
10.1021/ol303263q
XXXX American Chemical Society