10
Cheetham AG et al
2012; 4: 1527–31.
20: 37–41.
3
4
5
6
Ahrens VM, Bellmann-Sickert K, Beck-Sickinger AG. Peptides and 24 Ceylan H, Tekinay AB, Guler MO. Selective adhesion and growth of
peptide conjugates: therapeutics on the upward path. Future Med
Chem 2012; 4: 1567–86.
vascular endothelial cells on bioactive peptide nanofiber function-
alized stainless steel surface. Biomaterials 2011; 32: 8797–805.
Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug 25 Cinar G, Ceylan H, Urel M, Erkal TS, Tekin ED, Tekinay AB, et al.
delivery to tumor vasculature in a mouse model. Science 1998; 279:
Amyloid inspired self-assembled peptide nanofibers. Biomacro-
377–80.
molecules 2012; 13: 3377–87.
Burkhart DJ, Kalet BT, Coleman MP, Post GC, Koch TH. Doxorubicin- 26 Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger
formaldehyde conjugates targeting αvβ3 integrin. Mol Cancer Ther
2004; 3: 1593–604.
J. Responsive hydrogels from the intramolecular folding and self-
assembly of a designed peptide. J Am Chem Soc 2002; 124: 15030–
Wang S, Placzek WJ, Stebbins JL, Mitra S, Noberini R, Koolpe M, et al.
7.
Novel targeted system to deliver chemotherapeutic drugs to EphA2- 27 Li JY, Kuang Y, Gao Y, Du XW, Shi JF, Xu B. D-amino acids boost the
expressing cancer cells. J Med Chem 2012; 55: 2427–36.
Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery:
back to basics. Adv Drug Deliv Rev 2005; 57: 559–77.
Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA.
Overcoming multidrug resistance of small-molecule therapeutics
selectivity and confer supramolecular hydrogels of a nonsteroidal anti-
inflammatory drug (NSAID). J Am Chem Soc 2013; 135: 542–5.
28 Cheetham AG, Keith D, Zhang PC, Lin R, Su H, Cui HG. Targeting
tumors with small molecule peptides. Curr Cancer Drug Targets
2016; 16: 489–508.
7
8
through conjugation with releasable octaarginine transporters. Proc 29 Su H, Zhang PC, Cheetham AG, Koo JM, Lin R, Masood A, et al.
Natl Acad Sci U S A 2008; 105: 12128–33.
Supramolecular crafting of self-assembling camptothecin prodrugs
with enhanced efficacy against primary cancer cells. Theranostics
2016; 6: 1065–74.
9
Soukasene S, Toft DJ, Moyer TJ, Lu HM, Lee HK, Standley SM, et
al. Antitumor activity of peptide amphiphile nanofiber-encapsulated
camptothecin. ACS Nano 2011; 5: 9113–21.
30 Lock LL, Tang Z, Keith D, Reyes C, Cui HG. Enzyme-specific doxoru-
bicin drug beacon as drug-resistant theranostic molecular probes.
ACS Macro Lett 2015; 4: 552–5.
31 Sievers EL, Linenberger M. Mylotarg: Antibody-targeted chemotherapy
comes of age. Curr Opin Oncol 2001; 13: 522–7.
10 Zhang PC, Cheetham AG, Lock LL, Cui HG. Cellular uptake and
cytotoxicity of drug-peptide conjugates regulated by conjugation site.
Bioconjugate Chem 2013; 24: 604–13.
11 Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug
conjugates as effective prodrug strategies for targeted delivery. Adv 32 Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev
Drug Deliv Rev 2016; pii: S0169-409X(16)30208-3. Drug Discov 2012; 11: 19–20.
12 Lin R, Zhang PC, Cheetham AG, Walston J, Abadir P, Cui HG. Dual 33 Traynor K. Ado-trastuzumab emtansine approved for advanced breast
peptide conjugation strategy for improved cellular uptake and
mitochondria targeting. Bioconjugate Chem 2015; 26: 71–7.
13 Zompra AA, Galanis AS, Werbitzky O, Albericio F. Manufacturing
peptides as active pharmaceutical ingredients. Future Med Chem
2009; 1: 361–77.
cancer. Am J Health Sys Pharm 2013; 70: 562.
34 Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic thera-
peutic peptides: science and market. Drug Discov Today 2010; 15:
40–56.
35 Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic
aspects of biotechnology products. J Pharm Sci 2004; 93: 2184–
204.
14 Su H, Koo JM, Cui HG. One-component nanomedicine. J Control
Release 2015; 219: 383–95.
15 Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization 36 Evans WE, Relling MV. Clinical pharmacokinetics-pharmacodynamics
of peptide-amphiphile nanofibers. Science 2001; 294: 1684–8. of anticancer drugs. Clin Pharmacokinet 1989; 16: 327–36.
16 Rajangam K, Behanna HA, Hui MJ, Han XQ, Hulvat JF, Lomasney JW, 37 Undevia SD, Gomez-Abuin G, Ratain MJ. Pharmacokinetic variability
et al. Heparin binding nanostructures to promote growth of blood
vessels. Nano Lett 2006; 6: 2086–90.
17 Standley SM, Toft DJ, Cheng H, Soukasene S, Chen J, Raja SM, et
of anticancer agents. Nat Rev Cancer 2005; 5: 447–58.
38 Duncan R. Polymer conjugates as anticancer nanomedicines. Nat
Rev Cancer 2006; 6: 688–701.
al. Induction of cancer cell death by self-assembling nanostructures 39 Tong R, Cheng J. Anticancer polymeric nanomedicines. Polym Rev
incorporating a cytotoxic peptide. Cancer Res 2010; 70: 3020–6. 2007; 47: 345–81.
18 Pakalns T, Haverstick KL, Fields GB, McCarthy JB, Mooradian DL, 40 Cheng JJ, Khin KT, Jensen GS, Liu AJ, Davis ME. Synthesis of linear,
Tirrell M. Cellular recognition of synthetic peptide amphiphiles in self-
assembled monolayer films. Biomaterials 1999; 20: 2265–79.
beta-cyclodextrin-based polymers and their camptothecin conjugates.
Bioconjugate Chem 2003; 14: 1007–17.
19 Trent A, Marullo R, Lin B, Black M, Tirrell M. Structural properties of 41 Zou J, Jafr G, Themistou E, Yap Y, Wintrob ZAP, Alexandridis P, et
soluble peptide amphiphile micelles. Soft Matter 2011; 7: 9572–82.
20 Jun HW, Yuwono V, Paramonov SE, Hartgerink JD. Enzyme-mediated
al. pH-Sensitive brush polymer-drug conjugates by ring-opening
metathesis copolymerization. Chem Commun 2011; 47: 4493–5.
degradation of peptide-amphiphile nanofiber networks. Adv Mater 42 Yu Y, Chen CK, Law WC, Mok J, Zou J, Prasad PN, et al. Well-defined
2005; 17: 2612–7.
degradable brush polymer-drug conjugates for sustained delivery of
21 Gauba V, Hartgerink JD. Self-assembled heterotrimeric collagen triple
paclitaxel. Mol Pharm 2013; 10: 867–74.
helices directed through electrostatic interactions. J Am Chem Soc 43 Gao Y, Kuang Y, Guo ZF, Guo ZH, Krauss IJ, Xu B. Enzyme-instructed
2007; 129: 2683–90.
molecular self-assembly confers nanofibers and a supramolecular
22 Toledano S, Williams RJ, Jayawarna V, Ulijn RV. Enzyme-triggered self-
hydrogel of taxol derivative. J Am Chem Soc 2009; 131: 13576–7.
assembly of peptide hydrogels via reversed hydrolysis. J Am Chem 44 Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, et al. Prodrugs
Soc 2006; 128: 1070–1.
forming high drug loading multifunctional nanocapsules for intra-
23 Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, et
cellular cancer drug delivery. J Am Chem Soc 2010; 132: 4259–65.
al. Fmoc-Diphenylalanine self assembles to a hydrogel via a novel 45 Cheetham AG, Zhang P, Lin YA, Lock LL, Cui H. Supramolecular nano-
architecture based on pi-pi interlocked beta-sheets. Adv Mater 2008; structures formed by anticancer drug assembly. J Am Chem Soc
Acta Pharmacologica Sinica