9
M. González-Lopez et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4332–4336
4335
3. Okouchi, M.; Ekshyyan, O.; Maracine, M.; Aw, T. Y. Antioxid. Redox Signal. 2007,
9, 1059.
4. Deveraux, Q. L.; Reed, J. C. Genes Dev. 1999, 1, 239.
5. LaCasse, E. C.; Mahoney, D. J.; Cheung, H. H.; Plenchette, S.; Baird, S.; Korneluk,
R. G. Oncogene 2008, 27, 6252.
6. Pop, C.; Salvesen, G. S. J. Biol. Chem. 2009, 284, 21777.
7. Schimmer, A. D.; Dalili, S.; Batey, R. A.; Riedl, S. J. Cell Death Differ. 2006, 13, 179.
8. Riedl, S. J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.; Fesik, S. W.;
Liddington, R. C.; Salvesen, G. S. Cell 2001, 104, 791.
9. (a) Chai, J.; Shiozaki, E.; Srinivasula, S. M.; Wu, Q.; Dataa, P.; Alnemri, E. S.; Shi,
Y. Cell 2001, 104, 769; (b) Huang, Y.; Park, Y. C.; Rich, R. L.; Segal, D.; Myszka, D.
G.; Wu, H. Cell 2001, 104, 781.
10. Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R.-A.;
Robbins, P. D.; Fernandes-Alnemri, T.; Shi, Y.; Alnemri, E. S. Nature 2001, 410,
112.
11. Shiozaki, E. N.; Shi, Y. Trends Biochem. Sci. 2004, 39, 486.
12. (a) Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R. P.; Betz, S. F.; Oost, T.;
Herrmann, J.; Wu, J. C.; Fesik, S. W. Nature 2000, 408, 1004; (b) Wu, G.; Chai, J.;
Suber, T. L.; Wu, J.-W.; Du, C.; Wang, X.; Shi, Y. Nature 2000, 408, 1008.
13. Dean, E. J.; Ranson, M.; Blackhall, F.; Dive, C. Expert Opin. Ther. Targets 2007, 11,
1459.
14. (a) Sun, H.; Nikolovska-Coleska, Z.; Yang, C.-Y.; Qian, D.; Lu, J.; Qiu, S.; Bai, L.;
Peng, Y.; Cai, Q.; Wang, S. Acc. Chem. Res. 2008, 41, 1264; (b) Mannhold, R.;
Fulda, S.; Carosati, E. Drug Discovery Today 2010, 15, 210; (c) Flygare, J. A.;
Fairbrother, W. J. Expert Opin. Ther. Pat. 2010, 20, 251.
Figure 3. Model of compound 9t (magenta) bound to BIR2 (gray) with residues Lys
206 and Gln 197 depicted in yellow.
15. (a) Sun, H.; Liu, L.; Lu, J.; Bai, L.; Li, X.; Nikolovska-Coleska, Z.; McEachern, D.;
Yang, C. Y.; Qiu, S.; Yi, H.; Sun, D.; Wang, S. J. Med. Chem. 2011, 54, 3306; (b)
Sun, H.; Liu, L.; Lu, J.; Qiu, S.; Yang, C. Y.; Yi, H.; Wang, S. Bioorg. Med. Chem. Lett.
2010, 20, 3043; (c) Schimmer, A. D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska,
M.; Bonneau, M. J.; Pedersen, I. M.; Kitada, S.; Scott, F. L.; Bailly-Maitre, B.;
Glinsky, G.; Scudiero, D.; Sausville, E.; Salvesen, G.; Nefzi, A.; Ostresh, J. M.;
Houghten, R. A.; Reed, J. C. Cancer Cell 2004, 5, 25; (d) Orzaez, M.; Gortat, A.;
Sancho, M.; Carbajo, R. J.; Pineda-Lucena, A.; Palacios-Rodriguez, Y.; Perez-
Paya, E. Apoptosis 2011, 16, 460.
16. (a) Sun, H.; Nikolovska-Coleska, Z.; Chen, J.; Yang, C.-Y.; Tomita, Y.; Pan, H.;
Yoshioka, Y.; Krajewski, K.; Roller, P. P.; Wang, S. Bioorg. Med. Chem. Lett. 2005,
15, 793; (b) Oost, T. K.; Sun, C.; Armstrong, R. C.; Al-Assaad, A.-S.; Betz, S. F.;
Deckwerth, T. L.; Ding, H.; Elmore, S. W.; Meadows, R. P.; Olejniczak, E. T.;
Oleksijew, A.; Oltersdorf, T.; Rosenberg, S. H.; Shoemaker, A. R.; Tomaselli, K. J.;
Zou, H.; Fesik, S. W. J. Med. Chem. 2004, 47, 4417.
17. All synthesized compounds were purified by either medium pressure silica gel
chromatography or preparative HPLC using a C18 column. Compound purity
was determined using analytical HPLC/MS and NMR (1H and 13C). The yields for
the first two steps ranged from 70 – 90% while the yields for the last step
ranged from 20 – 90%. The purity of each final product was greater than 95% as
determined by HPLC/MS analysis.
18. Fluorescence polarization assays were run in 20 lL volume in 384 well format
with black plates. The assay solution was 25 mM Hepes at pH 7.5/1 mM tris(2-
carboxyethyl)phosphine/0.005% Tween 20 and 20 nM AVPIAQK-rhodamine.
XIAP BIR2 was present at 1
within a range of 100 M to 6.1 nM using two fold dilutions starting at 100
generating a 16 point curve. Plates were read on an Analyst HT in fluorescence
polarization mode with excitation at 530 nm, emission at 580 nm and
lM or XIAP BIR3 at 0.2 lM. Compound was present
Figure 4. Apoptosis in TRAIL-resistant cells sensitized with compounds 9f, 9h or 9j.
l
lM
a
dichroic mirror at 565 nm. Resulting data in mP was fit in GraphPad Prism 5
with a non-linear regression using a sigmodial curve with variable slope.
19. Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P.
P.; Krajewski, K.; Saito, N.; Stuckey, J.; Wang, S. Anal. Biochem. 2004, 332, 261.
20. Spectroscopic data for selected compound 9t: 1H NMR (400 MHz, D2O) d 7.52 (d,
J = 1.8 Hz, 1H), 7.37 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 3.1 Hz, 1H), 7.01 (dd, J = 9.1,
2.4 Hz, 1H), 6.43 (d, J = 3.1 Hz, 1H), 4.44 (d, J = 7.3 Hz, 1H), 4.39 (m, 1H), 3.83
(m, 2H), 3.65 (m, 1H), 2.56 (s, 3H), 2.05 (m, 2H), 1.94 (m, 2H), 1.38 (d, J = 6.7 Hz,
3H), 0.91 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H); 13C NMR (100 MHz, DMSO-
d6) d 169.6, 169.3, 132.6, 131.1, 127.4, 125.9, 114.5, 111.1, 110.4, 100.9, 60.2,
56.4, 55.9, 47.3, 38.2, 31.3, 30.0, 29.5, 24.7, 19.0, 18.2, 16.3. MS m/z = 414
(M+H).
21. The specific details of model-generation to illustrate the putative binding
mode of compound 9t to XIAP BIR2 are as follows. The experimental basis for
the approach was the prototypical structure of a Smac peptide (AVPI) bound to
XIAP BIR3,12 and our previous crystal structure showing a ‘Smac-like’ binding
of the N-terminus of caspase-3 from a crystallographic neighbor to the Smac
binding groove on XIAP BIR2 as described in Ref. 8. The latter still represents
the only experimental structural data available for Smac-like binding by the
XIAP BIR2 domain. The BIR domains of both structures were overlaid using
fitting algorithms from COOT and Pymol, which resulted in an overlay of the
P1–P3 residues of bound SMAC (AVP) and caspase-3 (SGV) of excellent fidelity,
and allowed us to place the SMAC sequence AVPI into the BIR2 SMAC binding
groove. We utilized the close structural similarity of compound 9t and AVPI to
model compound 9t onto BIR2 with backbone architecture and sidechain-like
moieties of compound 9t in similar orientations to AVP, while the sidechain
bearing the P4 indole was placed in the orientation observed for the Ile residue
of AVPI. This procedure was followed by a final energetic and geometrical
minimization step using Phenix.23 Comparison of this model with AVPI and the
BIR3 SMAC binding groove pointed to a generally very similar putative binding
of AVPI/compound 9t between XIAP BIR2 and 3 but revealed a different
binding pocket composition in P4 as described in the text and illustrated in
Figure 3.
search for clinically relevant drugs to circumvent TRAIL-resistant
cancers.
In summary, using a rational design approach we have systemat-
ically optimized small molecule monovalent Smac mimetics that in-
hibit XIAP by binding preferentially to the BIR2 domain. Compounds
9h, 9j, and 9t bind to the BIR2 domain with submicromolar affinities
and are three- to seven-fold selective for BIR2 over BIR3. In addition,
the XIAP inhibitory potency observed in vitro translates into cell kill-
ing activity in breast cancer cells, suggesting that these compounds
are potentially useful tools for probingapoptosis signaling pathways
in cells. Further optimization of these compounds towards the dis-
covery of potent and selective drug-like analogs is currently in
progress.
Acknowledgments
This work was supported by NIH grant HG005033 and
R01AA017238 to S.J.R. The authors thank Andrey Bobkov for expert
technical assistance. M.G.L. acknowledges Fundación Ramón Are-
ces for a postdoctoral fellowship.
References and notes
1. Riedl, S. J.; Salvesen, G. S. Nat. Rev. Mol. Cell Biol. 2007, 8, 405.
2. Lowe, S. W.; Lin, A. W. Carcinogenesis 2000, 21, 485.