226
W. H. Midura et al. / Tetrahedron Letters 54 (2013) 223–226
6. (a) Midura, W. H. Synlett 2006, 733; (b) Midura, W. H. Tetrahedron Lett. 2007,
48, 3907; (c) Midura, W. H.; Cypryk, M. Tetrahedron: Asymmetry 2010, 21, 177.
7. Midura, W. H., Sieron´ , L. unpublished results.
8. (a) Amori, L.; Serpi, M.; Marinozzi, M.; Constantino, G.; Diaz, M. G.; Hermit, M.
B.; Thomsen, C.; Pelliciari, R. Bioorg. Med. Chem. Lett. 2006, 16, 196–199; (b)
Hercouet, A.; Le Corre, M. Tetrahedron Lett. 2000, 41, 197; (c) Midura, W. H.;
Mikołajczyk, M. Tetrahedron Lett. 2002, 43, 3061.
9. Procedure for cyclopropanation: to a round-bottomed flask equipped with a
magnetic stir bar were added 2 mmol (0.47 g) of t-butyl-1-
dimethylphosphonoacrylate and 2 mmol (0.6 g) of (S)-dimethyl sulfonium-(p-
tolylsulfinyl) methyl tetrafluoroborate in 10 mL of CH2Cl2. To this suspension
was added 0.3 g of K2CO3 and the mixture stirred vigorously overnight.
Filtration and evaporation of the solvent afforded a crude residue, which was
purified by chromatography. Separation of the diastereomers was achieved by
chromatography on silica (hexane/acetone 2:1).
atom should be in the appropriate configuration. Surprisingly,
although the required relationship should be easily accessible from
cis-3b, we did not observe a significant increase in the amount of
regioisomer 9 (entries 9 and 10). In the absence of an anion-stabi-
lizing group the magnesium derivative is quite unstable. Therefore,
the only possibility of its stabilization is by coordination with the
phosphoryl group which is, however, accessible only from one side.
This probably reduces the barrier of inversion for the trans-magne-
sium derivative and similar reactivity for both isomers was ob-
served. The crucial element of the structure under investigations
is the presence of two electron-withdrawing substituents on car-
bon 2, which makes the 1,2 migration of the phosphoryl group
possible.
10. (+)-(1R,2R,Ss)-t-Butyl-1-dimethylphosphono-2-p-tolylsulfinyl-2-methylcyclo-
propane-carboxylate (4a): ½a D20 + 28.8 (c 3.9, acetone); mp 133–135 °C; 31P
ꢁ
NMR (81 MHz, CDCl3) d: 22.2; 1H NMR (500 MHz, CDCl3) d: 1.17 (s, 3H, CH3–
C(SO)), 1.45 (s, 9H, COC(CH3)3), 1.63 (dd, 1H, JHH = 6.2, JPH = 9.1 Hz), 1.93 (dd,
1H, JHH = 6.2, JPH = 16.6 Hz), 2.39 (s, 3H, C6H4CH3), 3.84 (d, 3H, POCH3,
JPH = 11.2 Hz), 3.96 (d, 3H, POCH3, JPH = 11.4 Hz), 7.29 and 7.50 (A2B2, 4H,
C6H4CH3); 13C NMR (125 MHz, CDCl3): 9.15 (d, JCP = 1.4 Hz), 20.1 (d,
JCP = 3.0 Hz), 21.3, 27.7, 35.7 (d, JCP = 179.7 Hz), 47.8 (d, JCP = 4.4 Hz), 53.4 (d,
JCP = 5.9 Hz), 53.8 (d, JCP = 6.4 Hz), 83.2, 124.7, 129.6, 138.5, 141.6, 165.2 (d,
JCP = 4.3 Hz); MS (CI) m/z 403 [M+H]+. Anal. Calcd. for C18H27O6PS: C, 53.72, H,
6.76. Found: C, 53.84, H, 6.87.
The migration product 9 was formed as the trans isomer, only
traces of the cis isomer16 were detected in two cases (entries 5
and 9). Evidently, in the case of cyclopropane 3 only a thermody-
namically controlled product could be obtained.
To the best of our knowledge, the migration of a phosphoryl
group on a cyclopropane ring, as described above, has not been
previously reported. It can be compared to [1,2]anionic rearrange-
ment in N-Boc and N-phosphonate terminal aziridines providing
an access to the corresponding aziridinyl esters and aziridinyl
phosphonates.17 Relevant base-induced migrations of a phosphoryl
group between a heteroatom and carbon have been the subject of
investigations in different laboratories.18 In the case presented
here, rearrangement takes place between carbon atoms in different
electronic environments, being electron deficient due to the pres-
ence of electron-withdrawing substituents and a carbanion. Fur-
ther studies of this reactivity pattern are currently underway in
our laboratory.
11. (a) Nishihata, K.; Nishio, M. Tetrahedron Lett. 1976, 17, 1695; (b) Biellmann, J.
F.; Vicens, J. J. Tetrahedron Lett. 1974, 15, 2915; (c) Durst, T.; Molin, M.
Tetrahedron Lett. 1975, 16, 63; (d) Chassaing, G.; Lett, R.; Marquet, A.
Tetrahedron Lett. 1978, 19, 471; (d) Chassaing, G.; Lett, R.; Marquet, A.
Tetrahedron Lett. 1978, 19, 471.
12. (a) Koppe, F.; Sklute, G.; Polborn, K.; Marek, I.; Knochel, P. Org. Lett. 2005, 7,
3789; (b) Abramovitch, A.; Fensterbank, L.; Malacria, M.; Marek, I. Angew.
Chem., Int. Ed. 2008, 47, 6865.
13. (a) Satoh, T.; Kondo, A.; Musashi, J. Tetrahedron Lett. 2004, 45, 5453; (b)
Hoffmann, R. W.; Nell, P. G. Angew. Chem., Int. Ed. 1999, 38, 338; (c) Hoffmann,
R. W. Chem. Soc. Rev. 2003, 32, 225.
14. Midura, W. H.; Krysiak, J. A.; Mikołajczyk, M. Tetrahedron: Asymmetry 2003, 14,
1245.
15. (+)-(1S,2R)-t-Butyl-2-methyl-2-dimethylphosphonocyclopropanecarboxylate
7a: ½a 2D0
ꢁ
+ 19.4 (c 1.2, acetone) 31P NMR (81 MHz, CDCl3) d: 30.7; 1H NMR
Acknowledgement
(500 MHz, CDCl3) d: 0.94 (ddd, 1H, J = 4.5, 7.75, JPH = 9.37 Hz), 1.30 (d, 3H
JPH = 12.45 Hz, CH3–CP), 1.47 (s, 9H, COC(CH3)3), 1.67 (ddd, 1H, JHH = 4.5, 6.6,
JPH = 16.75 Hz)⁄, 1.72 (ddd, 1H, JHH = 6.6, 7.75, JPH = 9.33 Hz)⁄, 3.74 (d, 3H,
POCH3, J = 10.7 Hz), 3.76 (d, 3H, POCH3, JPH = 10.7 Hz); 13C NMR (125 MHz,
CDCl3): 18.3 (CH2C), 19.0 (d, JCP = 194.0 Hz, CP), 21.8 (d, JCP = 4.7 Hz), 27.9
(COC(CH3)3), 29.4 (d, JCP = 2.9 Hz), 52.5 (d, JCP = 6.3 Hz), 52.9 (d, JCP = 6.2 Hz,
POCH3), 81.0 (COC(CH3)3), 168.4 (d, JCP = 7.1 Hz); MS (CI) m/z 265 [M+H]+;
HRMS (FAB) m/z Calcd for C11H22O5P [M+H]+ 265.1205 Found 265.1211.
16. Cis-9 (dP 28.8 ppm), was not separated in pure form.
We gratefully acknowledge financial support from the Ministry
of Science and Higher Education nr. 2579/B/H03//2010/38.
References and notes
1. (a) Pietruszka, J. Chem. Rev. 2003, 1051, 103; (b) Wessjohan, L. A.; Brandt, W.;
Thiemann, T. Chem. Rev. 2003, 103, 1625; (c) Donaldson, W. A. Tetrahedron
2001, 57, 8589; (d) Salaun, J. Top. Curr. Chem. 2000, 207, 1.
2. Liu, H. W.; Walsh, C. T. In The Chemistry of the Cyclopropyl Group; Rappoport, Z.,
Ed.; John Wiley: New York, NY, 1997; p 959.
3. (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103,
977; (b) de Meijere, A.; Kozhushkov, S. I.; Khlebnivow, A. F. Top. Curr. Chem.
2000, 207, 89.
17. (a) Hodgson, D. M.; Humphreys, P. G.; Miles, S. M.; Brierley, C. A. J.; Ward, J. G. J.
Org. Chem. 2007, 72, 10009; (b) Hodgson, D. M.; Humphreys, P. G.; Xu, Z.; Ward,
J. G. Angew. Chem., Int. Ed. 2007, 46, 2245.
18. (a) Hellwinkel, D.; Hofmann, G.; Lämmerzahl, F. Tetrahedron Lett. 1977, 18,
3241; (b) Jang, W. B.; Lee, K.; Lee, C. W.; Oh, D. Y. Chem. Commun. 1998, 60; (c)
Hammerschmidt, F.; Hanbauer, M. J. Org. Chem. 2000, 65, 6121; (d) Au-Yeung,
T.-L.; Chan, K.-Y.; Haynes, R. K.; Williams, I. D.; Yeung, L. L. Tetrahedron Lett.
2001, 42, 457.
4. Pellissier, H. Tetrahedron 2008, 64, 7041.
5. Li, A.-H.; Dai, L.-X.; Aggarval, V. K. Chem. Rev. 1997, 97, 2341.