10.1002/anie.202104031
Angewandte Chemie International Edition
COMMUNICATION
9685-9694; d) N. Yoshikawa, M. Shibasaki, Tetrahedron 2002, 58, 8289-
8298; e) S. Mettath, G. S. C. Srikanth, B. S. Dangerfield, S. L. Castle, J.
Org. Chem. 2004, 69, 6489-6492; f) B. M. Trost, F. Miege, J. Am. Chem.
Soc. 2014, 136, 3016-3019; g) M. Tiffner, J. Novacek, A. Busillo, K.
Gratzer, A. Massa, M. Waser, RSC Adv. 2015, 5, 78941-78949; h) S.
Lou, A. Ramirez, D. A. Conlon, Adv. Synth. Catal. 2015, 357, 28-34.
a) A. El Achqar, M. Boumzebra, M.-L. Roumestant, P. Viallefont,
Tetrahedron 1988, 44, 5319-5332; b) T. Kassem, J. Wehbe, V. Rolland-
Fulcrand, M. Rolland, M.-L. Roumestant, J. Martinez, Tetrahedron:
Asymmetry 2001, 12, 2657-2661; c) S. Li, X.-P. Hui, S.-B. Yang, Z.-J. Jia,
P.-F. Xu, T.-J. Lu, Tetrahedron: Asymmetry 2005, 16, 1729-1731.
a) Y. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405-
6406; b) F. Sladojevich, A. Trabocchi, A. Guarna, D. J. Dixon, J. Am.
Chem. Soc. 2011, 133, 1710-1713; c) H. Y. Kim, K. Oh, Org. Lett. 2011,
13, 1306-1309.
In summary, with 0.1-0.0033 mol% of chiral N-methyl
pyridoxal 7a as the catalyst, we have developed a highly efficient
asymmetric biomimetic aldol reaction of glycinate and
trifluoromethyl ketones, producing various chiral β-trifluoromethyl-
β-hydroxy-α-amino acid esters 6 in good yields (55-82% for syn-
6) with high distereoselectivities (7:1 ‒ >20:1 dr) and excellent
enantioselectivities (96-99% ee) under very mild conditions. The
reaction proceeds without any protecting manipulations toward
the active NH2 group, representing a straightforward and atom-
economic method for the synthesis of chiral β-trifluoromethyl-β-
hydroxy-α-amino acid esters.
[7]
[8]
Acknowledgements
[9]
a) J. S. Panek, C. E. Masse, J. Org. Chem. 1998, 63, 2382-2384; b) I. B.
Seiple, J. A. M. Mercer, R. J. Sussman, Z. Zhang, A. G. Myers, Angew.
Chem. Int. Ed. 2014, 53, 4642-4647; Angew. Chem. 2014, 126, 4730-
4735.
We are grateful for the generous financial support from the
National Natural Science Foundation of China (21871181), the
Shanghai Municipal Education Commission (2019-01-07-00-02-
E00029), the Shanghai Municipal Committee of Science and
Technology (18ZR1447600, 20JC1416800), “111” Innovation and
Talent Recruitment Base on Photochemical and Energy Materials
(No. D18020), and Shanghai Engineering Research Center of
Green Energy Chemical Engineering (No. 18DZ2254200).
[10]
H. Nozaki, S. Kuroda, K. Watanabe, K. Yokozeki, J. Mol. Catal. B Enzym.
2009, 59, 237-242.
[11] N. Dückers, K. Baer, S. Simon, H. Gröger, W. Hummel, Appl. Microbiol.
Biotechnol. 2010, 88, 409-424.
[12]
a) S. Li, X.-Y. Chen, D. Enders, Chem 2018, 4, 2026-2028; b) Q. Wang,
Q. Gu, S.-L. You, Angew. Chem. Int. Ed. 2019, 58, 6818-6825; Angew.
Chem. 2019, 131, 6890-6897; (c) L.-Z. Gong, Sci. China Chem. 2019,
62, 3-4; (d) J. Chen, Y. E. Liu, X. Gong, L. Shi, B. Zhao, Chin. J. Chem.
2019, 37, 103-112.
[13] J. Chen, X. Gong, J. Li, Y. Li, J. Ma, C. Hou, G. Zhao, W. Yuan, B. Zhao,
Science 2018, 360, 1438-1442.
Keywords: organocatalysis • biomimetic catalysis • carbonyl
catalysis • aldol reaction of glycine • chiral pyridoxal
[14] J. Ma, Q. Zhou, G. Song, Y. Song, G. Zhao, K. Ding, B. Zhao, Angew.
Chem. Int. Ed. 2021, 60, 10588–10592; Angew. Chem. 2021, 133,
10682–10686.
[1]
For selected references on bioactive β-hydroxy-α-amino acid deriva-
tives, see: a) J. Q. Liu, M. Odani, T. Yasuoka, T. Dairi, N. Itoh, M.
Kataoka, S. Shimizu, H. Yamada, Appl. Microbiol. Biotechnol. 2000, 54,
44-51; b) M. A. Schmidt, E. A. Reiff, X. Qian, C. Hang, V. C. Truc, K. J.
Natalie, C. Wang, J. Albrecht, A. G. Lee, E. T. Lo, Z. Guo, A. Goswami,
S. Goldberg, J. Pesti, L. T. Rossano, Org. Process Res. Dev. 2015, 19,
1317-1322; c) S. L. Goldberg, A. Goswami, Z. Guo, Y. Chan, E. T. Lo, A.
Lee, V. C. Truc, K. J. Natalie, C. Hang, L. T. Rossano, M. A. Schmidt,
Org. Process Res. Dev. 2015, 19, 1308-1316; d) C.-J. Lee, X. Liang, Q.
Wu, J. Najeeb, J. Zhao, R. Gopalaswamy, M. Titecat, F. Sebbane, N.
Lemaitre, E. J. Toone, P. Zhou, Nat. Commun. 2016, 7, 10638-10644; e)
A. W. Schultz, D.-C. Oh, J. R. Carney, R. T. Williamson, D. W. Udwary,
P. R. Jensen, S. J. Gould, W. Fenical, B. S. Moore, J. Am. Chem. Soc.
2008, 130, 4507-4516.
[15] a) B. Xu, L.-L. Shi, Y.-Z. Zhang, Z.-J. Wu, L.-N. Fu, C.-Q. Luo, L.-X.
Zhang, Y.-G. Peng, Q.-X. Guo, Chem. Sci. 2014, 5, 1988-1991; b) W.
Wen, L. Chen, M.-J. Luo, Y. Zhang, Y.-C. Chen, Q. Ouyang, Q.-X. Guo,
J. Am. Chem. Soc. 2018, 140, 9774-9780; c) W. Wen, M.-J. Luo, Y. Yuan,
J.-H. Liu, Z.-L. Wu, T. Cai, Z.-W. Wu, Q. Ouyang, Q.-X. Guo, Nat.
Commun. 2020, 11, 5372.
[16] X. Zhong, Z. Zhong, Z. Wu, Z. Ye, Y. Feng, S. Dong, X. Liu, Q. Peng, X.
Feng, Chem. Sci. 2021, 12, 4353-4360.
[17] a) L. Shi, C. Tao, Q. Yang, Y. E. Liu, J. Chen, J. Chen, J. Tian, F. Liu, B.
Li, Y. Du, B. Zhao, Org. Lett. 2015, 17, 5784-5787; b) Y. E. Liu, Z. Lu, B.
Li, J. Tian, F. Liu, J. Zhao, C. Hou, Y. Li, L. Niu, B. Zhao, J. Am. Chem.
Soc. 2016, 138, 10730-10733; c) X. Lan, C. Tao, X. Liu, A. Zhang, B.
Zhao, Org. Lett. 2016, 18, 3658-3661; d) C. Hou, G. Zhao, D. Xu, B. Zhao,
Tetrahedron Lett. 2018, 59, 1028-1033.
[2]
[3]
A. Gołębiowski, J. Jurczak, Synlett 1993, 1993, 241-245.
a) Y.-C. Luo, H.-H. Zhang, Y. Wang, P.-F. Xu, Acc. Chem. Res. 2010,
43, 1317-1330; b) A. E. Sorochinsky, J. L. Aceña, H. Moriwaki, T. Sato,
V. Soloshonok, Amino Acids 2013, 45, 1017-1033; c) Y. Zhang, H.
Farrants, X. Li, Chem. Asian J. 2014, 9, 1752-1764.
[18] a) T. Kimura, V. P. Vassilev, G.-J. Shen, C.-H. Wong, J. Am. Chem. Soc.
1997, 119, 11734-11742; b) J. Steinreiber, K. Fesko, C. Reisinger, M.
Schürmann, F. van Assema, M. Wolberg; D. Mink, H. Griengl,
Tetrahedron 2007, 63, 918-926; c) K. Baer, N. Dückers, T. Rosenbaum,
C. Leggewie, S. Simon, M. Kraußer, S. Oßwald, W. Hummel, H. Gröger,
Tetrahedron: Asymmetry 2011, 22, 925-928; d) M. L. Gutierrez, X.
Garrabou, E. Agosta, S. Servi, T. Parella, J. Joglar, P. Clapés, Chem.
Eur. J. 2008, 14, 4647-4656.
[4]
[5]
a) H. Kuzuhara, N. Watanabe, M. Ando, J. Chem. Soc., Chem. Commun.
1987, 95-96; b) J. T. Koh, L. Delaude, R. Breslow, J. Am. Chem. Soc.
1994, 116, 11234-11240.
a) Y. N. Belokon', A. G. Bulychev, S. V. Vitt, Y. T. Struchkov, A. S.
Batsanov, T. V. Timofeeva, V. A. Tsyryapkin, M. G. Ryzhov, L. A. Lysova,
J. Am. Chem. Soc. 1985, 107, 4252-4259; b) V. Rozenberg, V.
Kharitonov, D. Antonov, E. Sergeeva, A. Aleshkin, N. Ikonnikov, S.
Orlova, Y. Belokon', Angew. Chem. Int. Ed. 1994, 33, 91-92; Angew.
Chem. 1994, 106, 106-108; c) V. A. Soloshonok, D. V. Avilov, V. P.
Kukhar, V. I. Tararov, T. F. Savel'eva, T. D. Churkina, N. S. Ikonnikov, K.
A. Kochetkov, S. A. Orlova, A. P. Pysarevsky, Y. T. Struchkov, N. I.
Raevsky, Y. N. Belokon', Tetrahedron: Asymmetry 1995, 6, 1741-1756;
d) V. A. Soloshonok, D. V. Avilov, V. P. Kukhar, Tetrahedron 1996, 52,
12433-12442.
[19] F. Giacalone, M. Gruttadauria, P. Agrigento, R. Noto, Chem. Soc. Rev.
2012, 41, 2406-2447.
[20] For selected references on low-loading organocatalysis, see: a) L. Li, M.
Ganesh, D. Seidel, J. Am. Chem. Soc. 2009, 131, 11648-11649; b) M.
Lombardo, S. Easwar, F. Pasi, C. Trombini, Adv. Synth. Catal. 2009, 351,
276-282; c) A. J. M. Farley, C. Sandford, D. J. Dixon, J. Am. Chem. Soc.
2015, 137, 15992-15995; d) X. Zhou, Y. Wu, L. Deng, J. Am. Chem. Soc.
2016, 138, 12297-12302; e) C. R. Kennedy, D. Lehnherr, N. S.
Rajapaksa, D. D. Ford, Y. Park, E. N. Jacobsen, J. Am. Chem. Soc. 2016,
138, 13525-13528; f) H. Y. Bae, D. Höfler, P. S. J. Kaib, P. Kasaplar, C.
K. De, A. Döhring, S. Lee, K. Kaupmees, I. Leito, B. List, Nat. Chem.
2018, 10, 888-894; g) L. Schreyer, R. Properzi, B. List, Angew. Chem.
Int. Ed. 2019, 58, 12761-12777; Angew. Chem. 2019, 131, 12891-12908;
h) T. Fischer, J. Bamberger, M. Gómez-Martínez, D. G. Piekarski, O.
[6]
a) C. M. Gasparski, M. J. Miller, Tetrahedron 1991, 47, 5367-5378; b) T.
Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. Int. Ed.
2002, 41, 4542-4544; Angew. Chem. 2002, 114, 4724-4726; c) T. Ooi,
M. Kameda, M. Taniguchi, K. Maruoka, J. Am. Chem. Soc. 2004, 126,
5
This article is protected by copyright. All rights reserved.