Journal of the American Chemical Society
Communication
(c) Harrison, D. P.; Iovan, D. A.; Myers, W. H.; Sabat, M.; Wang, S.;
Zottig, V. E.; Harman, W. D. J. Am. Chem. Soc. 2011, 133, 18378.
(6) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 3645.
(7) Martin, R. M.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2012, 77,
2501.
(8) For information regarding piperidine-containing drug and drug
structure, bioactivity, full list of published studies, and information
regarding clinical trials, applications, and usage. Examples of top selling
pharmaceuticals: plavix (CID 60606), oxycontin (CID 5284603),
spiriva (5487426), suboxone (CID 56841117), combivent (CID
24847804), concerta (CID 9280). Select piperidine-containing drugs
with multiple stereocenters: paroxetine (CID 43815), hydergine (CID
168870), moxifloxacin (CID 101526), nelfinavir (CID 64142),
cabergoline (CID 83879), alvimopan (CID 5488547), morphine
(CID 5464110).
serendipitous finding provides a new avenue for the preparation
of highly substituted derivatives of this azabicyclic framework.
In summary, densely substituted 2-silyl 1,2-dihydropyridines
are readily prepared from α,β-unsaturated imines and TMS
acetylenes by a C−H bond functionalization and electro-
cyclization sequence. Without any purification or isolation,
treatment with acid generates unstabilized azomethine ylides as
versatile intermediates that lead to valuable nitrogen hetero-
cycles. In situ protonation and reduction provides tetrahydro-
pyridines with a substitution pattern matching that expected for
terminal alkyne incorporation. Alternatively, azomethine gen-
eration in the presence of a dipolarophile provides highly
substituted tropanes. Finally, by selectively tuning the acid in the
protonation step, an unprecedented rearrangement was observed
that can be used to produce 2-azabicyclo[3.1.0] systems.
(9) (a) For a review on the synthesis and elaborations of
dihydropyridine derivatives, see: Bull, J. A.; Mousseau, J. J.; Pelletier,
G.; Charette, A. B. Chem. Rev. 2012, 112, 2642. For leading references
on alternative methods for accessing substituted 1,2-dihydropyridines,
see: (b) Harrison, D. P.; Sabat, M.; Myers, W. H.; Harman, W. D. J. Am.
Chem. Soc. 2010, 132, 17282. (c) Harschneck, T.; Kirsch, S. F. J. Org.
Chem. 2011, 76, 2145. (d) Tejedor, D.; Mendez-Abt, G.; García-
Tellado, F. Chem.Eur. J. 2010, 16, 428. (e) Comins, D. L.; Weglarz, M.
A.; O’Connor, S. Tetrahedron Lett. 1988, 29, 1751.
ASSOCIATED CONTENT
* Supporting Information
Full experimental details and characterization data. This material
■
S
AUTHOR INFORMATION
Corresponding Author
■
(10) Padwa, A.; Dent, W. J. Org. Chem. 1987, 52, 235.
(11) For reviews on [3 + 2]-azomethine ylide dipolar cycloadditions,
see: (a) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106,
4484. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
(c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(12) For recent elegant applications of azomethine ylides in complex
synthesis, see: (a) Belanger, G.; Boudreault, J.; Levesque, F. Org. Lett.
2011, 13, 6204. (b) Coldham, I.; Burrell, A. J. M.; Guerrand, H. D. S.;
Oram, N. Org. Lett. 2011, 13, 1267. (c) Davoren, J.; Gray, D.; Harris, A.;
Nason, D.; Xu, W. Synlett 2010, 2010, 2490. (d) Peese, K. M.; Gin, D. Y.
Chem.Eur. J. 2008, 14, 1654. (e) Eckelbarger, J. D.; Wilmot, J. T.;
Epperson, M. T.; Thakur, C. S.; Shum, D.; Antczak, C.; Tarassishin, L.;
Djaballah, H.; Gin, D. Y. Chem.Eur. J. 2008, 14, 4293. (f) Coldham, I.;
Burrell, A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem., Int.
Ed. 2007, 46, 6159. (g) Su, S.; Porco, J. A., Jr. J. Am. Chem. Soc. 2007,
129, 7744. (h) Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y. J. Am. Chem.
Soc. 2006, 128, 10370.
(13) (a) Pandey, G.; Laha, J. K.; Lakshmaiah, G. Tetrahedron 2002, 58,
3525. (b) Pandey, G.; Sahoo, A. K.; Bagul, T. D. Org. Lett. 2000, 2, 2299.
(c) Pandey, G.; Laha, J. K.; Mohanakrishnan, A. K. Tetrahedron Lett.
1999, 40, 6065. (d) Pandey, G.; Lakshmaiah, G.; Ghatak, A. Tetrahedron
Lett. 1993, 34, 7301.
(14) (a) Jones, G. S.; Savage, S. A.; Ivy, S.; Benitez, P. L.; Ramirez, A. J.
Org. Chem. 2011, 76, 10332. (b) Savage, S. A.; Jones, G. S.; Kolotuchin,
S.; Ramrattan, S. A.; Vu, T.; Waltermire, R. E. Org. Process Res. Dev. 2009,
13, 1169. (c) Augeri, D. J.; Robl, J. A.; Betebenner, D. A.; Magnin, D. R.;
Khanna, A.; Robertson, J. G.; Wang, A.; Simpkins, L. M.; Taunk, P.;
Huang, Q.; Han, S.-P.; Abboa-Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo,
E.; Welzel, G. E.; Egan, D. M.; Marcinkeviciene, J.; Chang, S. Y.; Biller, S.
A.; Kirby, M. S.; Parker, R. A.; Hamann, L. G. J. Med. Chem. 2005, 48,
5025.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NIH Grant GM069559 (to J.A.E.).
R.G.B. acknowledges funding from The Director, Office of
Energy Research, Office of Basic Energy Sciences, Chemical
Sciences Division, U.S. Department of Energy, under Contract
DE-AC02-05CH11231. M.A.I. also acknowledges support from
an NRSA postdoctoral fellowship (F32GM090661).
REFERENCES
■
(1) Jordan, A. M; Roughly, S. D. J. Med. Chem. 2011, 54, 3451.
(2) For recent general reviews on C-H functionalization with
applications to heterocycle synthesis, see: (a) Yamaguchi, J.;
Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(b) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
(c) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev.
2011, 40, 4740. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem.
Rev. 2010, 110, 624. (e) Satoh, T.; Miura, M. Chem.Eur. J. 2010, 16,
11212. (f) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(g) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2009, 48, 5094. (h) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007,
36, 1173.
(3) For leading references, see: (a) Saget, T.; Lemouzy, S. J.; Cramer,
N. Angew. Chem., Int. Ed. 2012, 51, 2238. (b) Hyster, T. K.; Knorr, L.;
Ward, T. R.; Rovis, T. Science 2012, 338, 500. (c) Ye, B.; Cramer, N.
Science 2012, 338, 504. (d) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J.
Am. Chem. Soc. 2011, 6449. (e) Rakshit, S.; Grohmann, C.; Besset, T.;
Glorius, F. J. Am. Chem. Soc. 2011, 2350. (f) Nakanish, M.; Katayev, D.;
Besnard, C.; Kundig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.
(g) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41,
1013.
(4) (a) Duttwyler, S.; Lu, C.; Rheingold, A. L.; Bergman, R. G.; Ellman,
J. A. J. Am. Chem. Soc. 2012, 134, 4064. (b) Duttwyler, S.; Chen, S.;
Takase, M. K.; Wiberg, K. B.; Bergman, R. G.; Ellman, J. A. Science 2013,
339, 678−682.
(5) For recent elegant examples of diastereoselective, convergent
assembly of complex tetrahydropiperidines, see: (a) Yang, D.; Micalizio,
G. C. J. Am. Chem. Soc. 2012, 134, 15237. (b) Wong, H.; Garnier-
Amblard, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 7517.
̈
(15) For recent reviews on the Nazarov reaction, see: (a) Vaidya, T.;
Eisenberg, R.; Frontier, A. J. ChemCatChem 2011, 3, 1531. (b) Frontier,
A. J.; Collison, C. Tetrahedron 2005, 61, 7577. (c) Pellissier, H.
Tetrahedron 2005, 61, 6479. For examples of 6-π anionic electro-
cyclizations, see: (d) Baktharaman, S.; Afagh, N.; Vandersteen, A.;
Yudin, A. K. Org. Lett. 2010, 12, 240. (e) Woo, C. M.; Lu, L.; Gholap, S.
L.; Smith, D. R.; Herzon, S. B. J. Am. Chem. Soc. 2010, 132, 2540.
(f) Williams, D. R.; Reeves, J. T. J. Am. Chem. Soc. 2004, 126, 3434.
(16) To the best of our knowledge, no other literature examples have
been reported for intramolecular allylsilane additions to imines or
carbonyls to give cyclopropyl amines or alcohols, respectively.
̈
2481
dx.doi.org/10.1021/ja312311k | J. Am. Chem. Soc. 2013, 135, 2478−2481