Journal of Medicinal Chemistry
Brief Article
were then purified by reverse phase HPLC using a gradient of 0−20%
conditions. Trends Neurosci. 2009, 32, 591−601. (b) Gray, S. G.
Epigenetic treatment of neurological disease. Epigenomics 2011, 3,
431−450. (c) Grayson, D. R.; Kundakovic, M.; Sharma, R. P. Is there a
future for histone deacetylase inhibitors in the pharmacotherapy of
psychiatric disorders? Mol. Pharmacol. 2010, 77, 126−135. (d) Beurel,
E. HDAC6 regulates LPS-tolerance in astrocytes. PLoS One 2011, 6,
e25804. (e) McQuown, S. C.; Barrett, R. M.; Matheos, D. P.; Post, R.
J.; Rogge, G. A.; Alenghat, T.; Mullican, S. E.; Jones, S.; Rusche, J. R.;
Lazar, M. A.; Wood, M. A. HDAC3 is a critical negative regulator of
long-term memory formation. J. Neurosci. 2011, 31, 764−774.
(f) Guan, J.-S.; Haggarty, S. J.; Giacometti, E.; Dannenberg, J.-H.;
Joseph, N.; Gao, J.; Nieland, T. J. F.; Zhou, Y.; Wang, X.; Mazitschek,
R.; Bradner, J. E.; DePinho, R. A.; Jaenisch, R.; Tsai, L.-H. HDAC2
negatively regulates memory formation and synaptic plasticity. Nature
2009, 459, 55−60.
(5) (a) Feng, D.; Liu, T.; Sun, Z.; Bugge, A.; Mullican, S. E.;
Alenghat, T.; Liu, X. S.; Lazar, M. A. A circadian rhythm orchestrated
by histone deacetylase 3 controls hepatic lipid metabolism. Science
2011, 331, 1315−1319. (b) Gluckman, P. D.; Hanson, M. A.; Buklijas,
T.; Low, F. M.; Beedle, A. S. Epigenetic mechanisms that underpin
metabolic and cardiovascular diseases. Nature Rev. Endocrinol. 2009, 5,
401−408. (c) Mihaylova, M. M.; Vasquez, D. S.; Ravnskjaer, K.;
Denechaud, P.-D.; Yu, R. T.; Alvarez, J. G.; Downes, M.; Evans, R. M.;
Montminy, M.; Shaw, R. J. Class IIa histone deacetylases are hormone-
activated regulators of FOXO and mammalian glucose homeostasis.
Cell 2011, 145, 607−621. (d) Chou, D. H.; Holson, E. B.; Wagner, F.
F.; Tang, A. J.; Maglathlin, R. L.; Lewis, T. A.; Schreiber, S. L.; Wagner,
B. K. Inhibition of histone deacetylase 3 protects beta cells from
cytokine-induced apoptosis. Chem Biol. 2012, 19, 669−673.
(6) (a) Rotilli, D.; Simonetti, G.; Savarino, A.; Palamara, A. T.;
Migliaccio, A. R.; Mai, A. Non-cancer uses of histone deacetylase
inhibitors: effects on infectious diseases and beta-hemoglobinopathies.
Curr. Top. Med. Chem. 2009, 9, 272−291. (b) Andrews, K. T.; Haque,
A.; Jones, M. K. HDAC inhibitors in parasitic diseases. Immunol. Cell
Biol. 2012, 90, 66−77.
acetonitrile in water (0.1% TFA).
ASSOCIATED CONTENT
* Supporting Information
■
S
Spectroscopic characterization of the compounds in this paper;
details related to biochemical and cellular studies. This material
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Steve Johnston for analytical/purification support
and John McGrath for compound management support. We
also thank Joshua Ketterman for advice and assistance with cell
culture. This research was funded by the Stanley Medical
Research Institute.
ABBREVIATIONS USED
■
HDACs, histone deacetylases; CNS, central nervous system;
BBB, blood−brain barrier; LigE, ligand efficiency; ZBG, zinc-
binding group; SAHA, suberoylanilide hydroxamic acid; MD,
molecular dynamics
(7) (a) Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.;
Nixon, A.; Yoshida, M.; Wang, X.-F.; Yao, T.-P. HDAC6 is a
microtubule-associated deacetylase. Nature 2002, 417, 455−458.
(b) Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin,
S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and
microtubules in vivo. EMBO J. 2003, 22, 1168−1179. (c) Zou, H.; Wu,
Y.; Navre, M.; Sang, B.-C. Characterization of the two catalytic
domains in histone deacetylase 6. Biochem. Biophys. Res. Commun.
2006, 341, 45−50. (d) Zhang, Y.; Gilquin, B.; Khochbin, S.; Matthias,
P. Two catalytic domains are required for protein deacetylation. J. Biol.
Chem. 2006, 281, 2401−2404.
(8) (a) Dompierre, J. P.; Godin, J. D.; Charrin, B. C.; Cordelieres, F.
P.; King, S. J. Histone deacetylase 6 inhibition compensates for the
transport deficit in Huntington’s disease by increasing tubulin
acetylation. J. Neurosci. 2007, 27, 3571−3583. (b) Chen, S.; Owens,
G. C.; Makarenkova, H.; Edelman, D. B. HDAC6 regulates
mitochondrial transport in hippocampal neurons. PLoS One 2010, 5,
e10848.
(9) Rivieccio, A.; Brochier, C.; Willis, D.; Walker, D. E.; D’Annibale,
M. A.; McLaughlin, K.; Siddiq, A.; Kosikowski, A. P.; Jaffrey, S. R.;
Twiss, J. L.; Ratan, R. R.; Langley, B. HDAC6 is a target for protection
and regeneration following injury in the nervous system. Proc. Natl.
Acad. Sci. U. S. A. 2009, 106, 19599−19604.
(10) Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.;
Kosikowski, A. P. Rational design and simple chemistry yield a
superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem.
Soc. 2010, 132, 10842−10846.
(11) LigE was calculated using the following formula; ligE =
p(IC50 HDAC6)/(number of non-hydrogen atoms).
REFERENCES
■
(1) (a) Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and
the promise of epigenetic (and more) treatments for cancer. Nature
Rev. Cancer 2006, 6, 38−51. (b) Haberland, M.; Montgomery, R. L.;
Olson, E. N. The many roles of histone deacetylases in development
and physiology: implications for disease and therapy. Nature Rev.
Genet. 2009, 10, 32−42. (c) Fass, D. M.; Kemp, M. M.; Schroeder, F.
A.; Wagner, F. F.; Wang, Q.; Holson, E. B. Histone Acetylation and
Deacetylation. In Epigenetic Regulation and Epigenomics: Advances in
Molecular Biology and Medicine; (Wiley-VCH Vrlag & Co. KGaA:
Weinheim, 2012; pp 515−561.
(2) (a) Marks, P. A.; Richon, V. M.; Miller, T.; Kelly, W. K. Histone
Deacetylase Inhibitors. Adv. Can. Res. 2004, 91, 137−168. (b) de
Ruijter, A. J. M.; Van Gennip, A. H.; Caron, H. N.; Kemp, S.; Van
Kuilenburg, A. B. P. Histone deacetylases (HDACs): characterization
of the classical HDAC family. Biochem. J. 2003, 370, 737−749.
(c) Glaser, K. B.; Staver, M. J.; Waring, J. F.; Stender, J.; Ulrich, R. G.;
Davidsen, S. K. Gene expression profiling of multiple histone
deacetylase (HDAC) inhibitors: defining a common gene set
produced by HDAC inhibition in T24 and MDA carcinoma cell
lines. Mol. Cancer Ther. 2003, 2, 151−163. (d) Spange, S.; Wagner, T.;
Heinzel, T.; Kramer, O. H. Acetylation of non-histone proteins
̈
modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol.
2009, 41, 185−198.
(3) (a) Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer
activities of histone deacetylase inhibitors. Nature Rev. Drug Discovery
2006, 5, 769−784. (b) Khan, O.; La Thangue, N. B. HDAC inhibitors
in cancer biology: emerging mechanisms and clinical applications.
Immunol. Cell Biol. 2012, 90, 85−94. (c) Witt, O.; Deubzer, H. E.;
Milde, T.; Oehme, I. HDAC family: What are the cancer relevant
targets? Cancer Lett. 2009, 277, 8−21.
(12) (a) Abad-Zapatero, C.; Metz, J. T. Ligand efficiency indices as
guideposts for drug discovery. Drug Discovery Today 2005, 10, 464−
469. (b) Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A. The
maximal affinity of ligands. Proc. Natl. Acad. Sci. U. S. A. 1999, 96,
9997−10002. (c) Hopkins, A. L.; Groom, C. R.; Alex, A. Ligand
(4) (a) Chuang, D. M.; Leng, Y.; Marinova, Z.; Kim, H. J.; Chiu, C.
T. Multiple roles of HDAC inhibition in neurodegenerative
D
dx.doi.org/10.1021/jm301355j | J. Med. Chem. XXXX, XXX, XXX−XXX