P.-C. Yan et al. / Tetrahedron Letters 54 (2013) 1449–1451
1451
COOH
NHCbz
NHCbz
b)
a)
c)
N
N
N
CN
Br
Br
BnO
BnO
BnO
10
11
12
Boc
N
Boc
e)
d)
N
Silodosin
O
O
OCH2CF3
OCH2CF3
N
N
CONH2
CN
BnO
BnO
13
14
Scheme 3. Synthesis route of Silodosin from chiral acid 10. Reaction conditions: (a) Diphenylphosphoryl azide (DPPA), DIPEA, PhCH2OH, 70 °C, 10 h, 76%; (b) CuCN, DMF,
120 °C, 20 h, 88%; (c) (i) H2, Pd/C, MeOH, rt, 3 h; (ii) 3b, toluene, reflux, 18 h; (iii) Boc2O, NaHCO3, 1,4-dioxane, rt, 2 h, 72% (for three steps); (d) H2O2, 5 N NaOH, DMSO, rt, 12 h,
83%; (e) H2, Pd/C, 6 N HCl, MeOH, 90%.
enantioselectivity (98%, ee) within 9 h at S/C = 2000 (entries 5–7).
Further investigation indicated that in the presence of 3–5 equiv
of NEt3, the catalyst (Ra)-1b allowed the reaction to be performed
at a very low catalyst loading (S/C = 6000) without compromising
the enantioselectivity (entries 13 and 14), albeit the reaction needs
a longer time. Compared with NEt3, other additives such as iPr2NEt
and Cs2CO3 gave lower conversion (entries 9 and 10). It is worthy
mentioning that bromine on the aromatic ring of 9 was tolerated
under hydrogenation conditions, and the product (10) was isolated
in almost quantitative yield. A reasonable explanation raised by
References and notes
1. Caine, M.; Pfau, A.; Perlberg, S. Br. J. Urol. 1976, 48, 255–263.
2. Noguchi, Y.; Ohtake, A.; Suzuk, M.; Sasamata, M. Eur. J. Pharm. 2008, 580,
256–261.
3. (a) Kitazawa, M.; Ban, M.; Okazaki, K.; Ozawa, M.; Yazaki, T.; Yamagishi, R, U.S.
Patent 5,387,603.; (b) Lepor, H.; Hill, L. A. Pharmacotherapy 2010, 30,
1303–1312; (c) Michel, M. C. Eur. Urol. Suppl. 2010, 9, 486–490.
4. (a) Kamijo, T.; Yamaguchi, T.; Teranishi, H. JP Patent 200,11,99,956.; (b)
Yamaguchi, T.; Tsuchiya, I.; Kikuchi, K. WO 2006,46,499.; (c) Wang, X.; Wang,
X.; Wang, Z.; Sui, Q.; Shi, H. CN 101585798A.
5. Kamijo, T.; Yamaguchi, T.; Teranishi, H.; Tsuchiya, I. JP 200199956A.
6. (a) Yamaguchi, T.; Takeuchi, H.; Shiobara, H.; JP Patent 200,22,65,444.; (b) Luo,
X.; Chen, G.; Zhang, H. Chin. Chem. Lett. 2008, 19, 59–60.
Yamamoto et al. is that the
a,b-unsaturated carboxylate anion
7. For Ru catalysts, see: (a) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R.
J. Org. Chem. 1987, 52, 3176–3178; (b) Uemura, T.; Zhang, X.; Matsumura, K.;
Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Chem. 1996,
61, 5510–5516; (c) Benincori, T.; Cesarotti, E.; Piccolo, O.; Sannicolò, F. J. Org.
Chem. 2000, 65, 2043–2047; (d) Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.;
Chan, A. S. C.; Wong, W. T. J. Am. Chem. Soc. 2000, 122, 11513–11514; (e)
Maligres, P. E.; Krska, S. W.; Humphrey, G. R. Org. Lett. 2004, 6, 3147–3150; (f)
Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed.
2005, 44, 1118–1121; (g) Cheng, X.; Xie, J.-H.; Li, S.; Zhou, Q.-L. Adv. Synth. Catal.
2006, 348, 1271–1276; (h) Qiu, L.; Li, Y.-M.; Kwong, F. Y.; Yu, W.-Y.; Fan, Q.-H.;
Chan, A. S. C. Adv. Synth. Catal. 2007, 349, 517–520; For Rh catalysts, see: (i)
Yamada, I.; Yamaguchi, M.; Yamagishi, T. Tetrahedron: Asymmetry 1996, 7,
3339–3342; (j) Houpis, I. N.; Patterson, L. E.; Alt, C. A.; Rizzo, J. R.; Zhang, T. Y.;
Haurez, M. Org. Lett. 2005, 7, 1947–1950; (k) Co, T. T.; Shim, S. C.; Cho, C. S.;
Kim, T.-J.; Kang, S. O.; Han, W.-S.; Ko, J.; Kim, C.-K. Organometallics 2005, 24,
4824–4831; (l) Hoen, R.; Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.;
Meetsma, A.; Tiemersma-Wegman, T. D.; de Vries, A. H. M.; de Vries, J. G.;
Feringa, B. L. Angew. Chem., Int. Ed. 2005, 44, 4209–4212; (m) Chen, W.;
McCormack, P. J.; Mohammed, K.; Mbafor, W.; Roberts, S. M.; Whittall, J. Angew.
Chem., Int. Ed. 2007, 46, 4141–4144.
formed with the addition of tertiary amine is more strongly che-
lated to the transition-metal center than the acid itself, resulting
in higher reactivity and enantioselectivity.13
With chiral intermediate 10 in hand, the synthesis of Silodosin
was accomplished according to the route shown in Scheme 3.14
Curtius rearrangement of 10, followed by trapping the intermedi-
ary isocyanate with benzyl alcohol gave the amine 11 in 76%
yield with 97.8% ee without loss of the enantiomeric purity. Cyna-
tion of 11 by coupling with CuCN in DMF afforded cyanide com-
pound 12 in 85% yield. After deprotection of the Cbz group of 12
and coupling with 3b, followed by protection of amino group
with Boc, 13 was isolated in 90% yield in three steps. Oxidative
hydrolysis of 13 provided amide 14 in 83% yield. Deprotection
of Boc and benzyl groups simultaneously of 14 by hydrogenation
with Pd/C in the presence of acid gave Silodosin in 90% yield
(Scheme 3).
8. (a) Blaser, H.-U. Adv. Synth. Catal. 2002, 344, 17–31; (b) Roseblade, S. J.; Pfaltz, A.
Acc. Chem. Res. 2007, 40, 1402–1411; (c) Zhou, Y.-G. Acc. Chem. Res. 2007, 40,
1357–1366.
9. Scrivanti, A.; Bovo, S.; Ciappa, A.; Matteoli, U. Tetrahedron Lett. 2006, 47,
9261–9265.
In summary, we have accomplished the asymmetric synthesis
of Silodosin with high efficiency and high enantioselectivity by a
new approach. The key step of the synthesis is the asymmetric
hydrogenation of
by using the novel Ir-SIPHOX catalysts.
a
,b-unsaturated carboxylic acid intermediate 9
10. Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128,
12886–12891.
11. Li, S.; Zhu, S.-F.; Zhang, C.-M.; Song, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130,
8584–8585.
12. Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.; Zhang, C.-M.; Zhou, Q.-L. J. Am. Chem. Soc.
2010, 132, 1172–1179.
Supplementary data
13. Yamamoto, K.; Ikeda, K.; Yin, L. L. J. Organomet. Chem. 1989, 370, 319–332.
14. (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203–6205;
(b) Carda, M.; Gonzalez, F.; Sanchez, R.; Marco, J. A. Tetrahedron: Asymmetry
2002, 13, 1005–1010; (c) Kim, S.; Ko, H.; Kim, E.; Kim, D. Org. Lett. 2002, 4,
1343–1345.
Supplementary data associated with this article can be found, in