K. Banert et al. / Tetrahedron 69 (2013) 2501e2508
2507
(m, 5H, AreH); 13C NMR (CDCl3):
d
¼41.3 (s, C-11), 43.1 (d, C-3 or
4.12. Preparation of 6-(60-aza-30-thiabicyclo[3.1.0]hexane-
30,30-dioxid-10-yl)-6-aza-3-thiabicyclo[3.1.0]hexane-1-carbo-
nitrile-3,3-dioxide (23a)
C-12), 44.1 (t, C-4 or C-10), 46.2 (t, C-4 or C-10), 47.8 (d, C-3 or C-12),
58.8 (t, C-15), 66.7 (d, C-1), 125.4 (d, eCH] or AreC), 128.07 (d,
eCH] or AreC), 128.11 (d, eCH] or AreC), 129.1 (d, eCH] or
AreC), 131.1 (s, AreC), 132.3 (d, eCH] or AreC), 152.6 (s, C-6 or C-
8), 152.6 (s, C-6 or C-8); HRMS (ESI) calcd for C17H17N4O2 ([MþH]þ):
309.1346; found: 309.1346. Anal. Calcd for C17H16N4O2: C 66.22, H
5.23, N 18.17, found: C 66.23, H 5.18, N 18.17.
A solution of 11a (100 mg, 0.63 mmol) and hydrogen cyanide
(ca. 65 mg, 2.4 mmol) in chloroform (4 mL) was irradiated at ꢁ50 ꢀC
for ca. 6 h. The product partially precipitated as a colorless solid.
After removal of the solvent under reduced pressure, the residue
was washed with chloroform to give 23a (74e78 mg, 82e86%) as
slightly yellow solid, which slowly decomposed on heating above
4.10. Preparation of 2-aza-5-thiatetracyclo[6.2.1.02,7.03,7]-un-
dec-9-ene-5,5-dioxide (21a)
50 C; IR (KBr):
d
¼2246 (CN), 1320 cmꢁ1 (SO2); 1H NMR (DMSO-d6):
ꢀ
~
n
¼2.77 (ddd, 3J¼6.2 Hz, J¼6.0 Hz, J¼1.4 Hz, 1H, 50-H), 3.00
3
(d, 3J¼6.2 Hz, 1H, NH), 3.03 (dd, 2J¼14.2 Hz, J¼1.4 Hz, 1H, 40-H), 3.21
A solution of 11a (100 mg, 0.63 mmol) and freshly distilled
cyclopentadiene (166 mg, 2.5 mmol) in chloroform (5 mL) was ir-
radiated at ꢁ50 ꢀC for ca. 6 h until the azide was completely con-
sumed. Thereafter, the solvent was removed under reduced
pressure, and the residue was washed with ethyl acetate/hexane
2
(d, 2J¼13.7 Hz, 1H, 4-H), 3.34 (d, J¼13.8 Hz, 1H, 20-H), 3.56
(d, J¼4.9 Hz, 1H, 5-H), 3.61 (ddd, 2J¼13.7 Hz, J¼4.9 Hz, J¼1.1 Hz, 1H,
4-H), 3.717 (d, 2J¼14.0 Hz, 1H, 2-H), 3.725 (ddd, 2J¼14.2 Hz,
3J¼6.0 Hz, J¼2.6 Hz, 1H, 40-H), 3.92 ( dd, 2J¼14.0 Hz, J¼1.1 Hz, 1H,
2-H), 4.12 (dd, 2J¼13.8 Hz, J¼2.6 Hz, 1H, 20-H); 13C NMR (DMSO-d6):
ꢁ1
~
(1:1) to get 21a (112e124 mg, 90e100%); IR (CDCl3):
n
¼1319 cm
d
¼32.4 (s, CeCN), 32.9 (d, CHeNH), 40.4 (d, CHeN), 53.1 (t, C-4),
(SO2); 1H NMR (CDCl3):
d
¼1.80 (d, 2J¼8.1 Hz, 1H, 11-H), 2.21 (d,
54.0 (t, C-40), 54.9 (t, C-2), 55.1 (s, CeNH), 55.7 (t, C-20),115.8 (s, CN);
HRMS (ESI) calcd for C9H12N3O4S2 ([MþH]þ): 290.0264; found:
290.0264. The assignment of the NMR signals was supported by
heteronuclear shift correlation (2D NMR) and by comparison of
experimental and simulated 1H NMR spectra.
2J¼8.1 Hz, 1H, 11-H), 2.30 (d, J¼5.2 Hz, 1H, 3-H), 3.09 (m, 1H, 8-H),
3.16 (d, 2J¼13.6 Hz, 1H, 4-H), 3.31 (dd, 2J¼13.6 Hz, J¼5.2 Hz, 1H,
4-H), 3.41 (d, 2J¼13.2 Hz,1H, 6-H), 3.49 (d, 2J¼13.2 Hz, 1H, 6-H), 4.19
(m, 1H, 1-H), 5.74 (m, 1H, 9-H or 10-H), 6.15 (m, 1H, 9-H or 10-H);
13C NMR (CDCl3):
d
¼46.5 (s, C-7), 46.7 (d, C-3 or C-8), 47.4 (d, C-3 or
C-8), 55.7 (t), 56.3 (t), 59.4 (t), 66.6 (d, C-1), 127.3 (d, C-9 or C-10),
132.2 (d, C-9 or C-10); HRMS (ESI) calcd for C9H12NO2S ([MþH]þ):
198.0583; found: 198.0574.
Acknowledgements
Financial support of the Alexander von Humboldt Foundation
and especially a fellowship for B.S. are gratefully acknowledged.
4.11. Preparation of 5-methyl-6-aza-3-thiabicyclo[3.1.0]-hex-
ane-1-carbonitrile-3,3-dioxide (22b)
Supplementary data
A solution of 11b (100 mg, 0.58 mmol) and hydrogen cyanide
(ca. 65 mg, 2.4 mmol) in chloroform (4 mL) was irradiated at ꢁ50 ꢀC
for ca. 6 h. The product partially precipitated. After removal of the
solvent under reduced pressure, the residue was washed with ethyl
acetate/hexane (1:1) to give 22b (94e98.6 mg, 95e100%) as slightly
yellow solid, which slowly decomposed on heating above 50 ꢀC; IR
Supplementary data associated with this article can be found in
These data include MOL files and InChiKeys of the most important
compounds described in this article.
References and notes
ꢁ1
1
(KBr):
¼2246 (CN), 1320 cm (SO2); H NMR (DMSO-d6, 22 ꢀC):
~
n
d
¼1.57 (br s, 3H, CH3), 3.25 (d, 2J¼13.7 Hz, 1H, CH2), 3.35 (br s, 1H,
1. Part 31 of the series ‘Reactions of unsaturated azides’. For part 30, see: Banert,
K.; Arnold, R.; Hagedorn, M.; Thoss, P.; Auer, A. A. Angew. Chem. 2012, 124,
7633e7636; Angew. Chem., Int. Ed. 2012, 51, 7515e7518.
NH), 3.46 (d, 2J¼13.9 Hz, 1H, CH2), 3.58 (br s, 1H, CH2), 3.91 (br s, 1H,
CH2); 13C NMR (DMSO-d6, 22 ꢀC):
d¼18.8 (br q, CH3), 31.6 (s, CeCN),
2. For reviews on vinyl azides, see: (a) Banert, K. In Houben-Weyl; Kropf, H.,
Schaumann, E., Eds.; Thieme: Stuttgart, 1993; Vol. E15, pp 818e875; (b)
Hassner, A. In Azides and Nitrenes; Scriven, E. F. V., Ed.; Academic: Orlando,
1984; pp 35e76; (c) Banert, K. In Organic Azides: Syntheses and Applications;
45.3 (s, CeCH3), 55.3 (t, CH2), 56.7 (t, CH2), 117.5 (s, CN); 1H NMR
(DMF-d7, 60 ꢀC):
d
¼1.69 (s, 3H, CH3), 3.33 (d, 2J¼13.7 Hz, 1H, CH2),
3.54 (d, 2J¼13.9 Hz, 1H, CH2), 3.65 (dd, 2J¼13.7 Hz, J¼1.6 Hz, 1H,
€
Brase, S., Banert, K., Eds.; Wiley: Chichester, UK, 2010; pp 115e166; (d) Collier,
CH2), 3.94 (d, 2J¼13.9 Hz, 1H, CH2), 3.3e3.9 (very br s, NH); 13C NMR
S. J. In Science of Synthesis; Molander, G. A., Ed.; Thieme: Stuttgart, 2006; Vol.
33, pp 541e563; (e) Smolinsky, G.; Pryde, C. A. In The Chemistry of the Azido
Group; Patai, S., Ed.; Wiley: New York, NY, 1971; pp 555e585.
3. Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1965, 87, 4203e4204.
4. For a review, see: Hassner, A. Acc. Chem. Res. 1971, 4, 9e16.
5. (a) Hassner, A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686e2691; (b) Hassner, A.;
Fowler, F. W. Tetrahedron Lett. 1967, 8, 1545e1548; (c) Rose, B.; Schollmeyer, D.;
Meier, H. Liebigs Ann. 1997, 409e412.
6. Banert, K.; Meier, B. Angew. Chem. 2006, 118, 4120e4123; Angew. Chem., Int. Ed.
2006, 45, 4015e4019.
(DMF-d7, 60 ꢀC):
d¼19.5 (q, CH3), 33.0 (s, CeCN), 45.8 (s, CeCH3),
56.4 (t, CH2), 57.4 (t, CH2), 117.9 (s, CN); minor diastereomer: 1H
NMR (DMF-d7, e50 ꢀC):
d
¼1.57 (s, 3H, CH3), 3.43 (d, 2J¼14.0 Hz, 1H,
endo-4-H), 3.64 (d, 2J¼14.7 Hz, 1H, endo-2-H), 3.74 (s, 1H, NH), 3.94
(dd, 2J¼14.0 Hz, 4J¼2.9 Hz, 1H, exo-4-H), 4.39 (dd, 2J¼14.7 Hz,
4J¼2.9 Hz, 1H, exo-2-H); the assignments of the 1H NMR signals
were supported by the 4J coupling between exo-2-H and exo-4-H
(w coupling), and homonuclear NOE experiments, which were
performed at ꢁ67 ꢀC in a 5:2 mixture of DMF-d7 and acetone-d6.
These investigations made it possible to attribute all 1H NMR sig-
7. Schweng, J.; Zbiral, E. Liebigs Ann. Chem. 1978, 1089e1095.
8. Reviews on 2H-azirines: (a) Backes, J. In Houben-Weyl; Klamann, D., Ed.;
Thieme: Stuttgart, 1992; Vol. E16c, pp 321e369; (b) Nair, V. In The Chemistry of
Heterocyclic Compounds, Small-ring Heterocycles; Hassner, A., Ed.; Wiley: New
York, NY, 1983; Vol. 42, pp 215e332; (c) Pearson, W. H.; Lian, B. W.; Bergmeier,
S. C. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon: New
York, NY, 1996; Vol. 1A, pp 1e60; (d) Palacios, F.; Ochoa de Retana, A. N.;
Martinez de Marigorta, E.; de Los Santos, J. M. Eur. J. Org. Chem. 2001,
2401e2414; (e) Gilchrist, T. L. Aldrichimica Acta 2001, 34, 51e55; (f) Rai, K. M. L.;
Hassner, A. In Advances in Strained and Interesting Organic Molecules; Halton, B.,
Ed.; Jai: Greenwich, 2000; Vol. 8, pp 187e257.
nals of both invertomers of 22b; 13C NMR (DMF-d7, e50 ꢀC):
d¼20.6
(q, CH3), 32.6 (s, CeCN), 44.8 (s, CeCH3), 54.9 (t, CH2), 56.3 (t, CH2),
119.0 (s, CN); major diastereomer: 1H NMR (DMF-d7, e50 ꢀC):
d
¼1.71 (s, 3H, CH3), 3.44 (d, 2J¼13.5 Hz, 1H, endo-4-H), 3.70 (d, br,
2J¼13.5 Hz, 1H, exo-4-H), 3.71 (d, 2J¼13.5 Hz, 1H, endo-2-H), 4.03 (d,
br, 2J¼13.5 Hz, 1H, exo-2-H), 4.46 (s, 1H, NH); 13C NMR (DMF-d7,
€
€
9. Banert, K.; Meier, B.; Penk, E.; Saha, B.; Wurthwein, E.-U.; Grimme, S.; Ruffer, T.;
e50 ꢀC):
d¼18.8 (q, CH3), 32.9 (s, CeCN), 46.8 (s, CeCH3), 56.1
Schaarschmidt, D.; Lang, H. Chem.dEur. J. 2011, 17, 1128e1136.
10. (a) Priebe, H. Angew. Chem. 1984, 96, 728e729; Angew. Chem., Int. Ed. Engl. 1984,
23, 736e738; (b) Banert, K. Angew. Chem. 1985, 97, 231e232; Angew. Chem., Int.
Ed. Engl. 1985, 24, 216e217.
(t, CH2), 57.4 (t, CH2), 118.0 (s, CN); HRMS (ESI) calcd for C6H9N2O2S
([MþH]þ): 173.0379; found: 173.0368. Anal. Calcd for C6H8N2O2S:
C 41.85, H 4.68, found: C 41.73, H 4.69.
11. Frank, R. L.; Seven, R. P. Organic Syntheses; 1955; Collect. Vol. No. III, pp 499e500.