Page 3 of 4
Journal of the American Chemical Society
(11) (a) Dyker, G. Angew. Chem. Int. Ed. 1994, 33, 103. (b) Baudoin, O.;
palladation at the acidic α-position and subsequent β-hydride
Herrbach, A.; Guéritte, F. Angew. Chem., Int. Ed. 2003, 42, 5736. (c)
Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685. (d) Lafrance, M.; Gorelsky, S. I.; Fagnou, K.
J. Am. Chem. Soc. 2007, 129, 14570. (e) Watanabe, T.; Oishi, S.; Fujii, N.;
Ohno, H. Org. Lett. 2008, 10, 1759. (f) Anas, S.; Cordi, A.; Kagan, H. B.
Chem. Commun. 2011, 47, 11483. (g) Saget, T.; Lemouzy, S. J.; Cramer,
N. Angew. Chem. Int. Ed. 2012, 51, 2238.
1
2
3
4
5
6
7
8
9
10
1
12
elimination was responsible for the observed reactivity, we have
prepared α-deutero substrate 1c (α-D) and subjected it to the
alkynylation reaction conditions (Scheme 2). The product
obtained (2c (α-D), 67%) fully retained the α-deuterium, thus
suggesting that the Baudoin’s -hydride elimination pathway in
the presence of LiNCy2 is unlikely in our alkynylation reactions.16
Since the cleavage of C(sp3)–H bonds by alkynylpalladium
complexes has not been shown before, we prepared these
complexes from Pd(0) and bromoalkynes in the presence of
tBuXPhos·HBF4 and reacted them with substrates under standard
conditions. The formation of the desired product further supports
the Pd(0)-catalyzed C–H activation reaction pathway (see SI).
(12) (a) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem.,
Int. Ed. 2011, 50, 7438. (b) Katayev, D.; Nakanishi, M.; Bürgi, T.;
Kündig, E. P. Chem. Sci. 2012, 3, 1422.
(13) A seminal example of Pd-catalyzed Sonogashira coupling with alkyl
halides: Eckhardt, M.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 13642.
(14) Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295.
(15) Pd(0)-catalyzed aminoalkynylation of olefins: Nicolai, S. Waser, J. Org.
Lett. 2011, 13, 6324.
(16) Renaudat, A.; Jean-Gérard, L.; Jazzar, R.; Kefalidis, C. E.; Clot, E.;
Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261.
Scheme 2. Deuterium Labeling in C(sp3)–H Alkynylation
13
14
15
16
17
18
19
In summary, alkynylation of C(sp3)–H bonds with alkynyl
bromides has been achieved using Pd(0)/NHC and Pd(0)/PR3
catalysts without the use of co-oxidants. This illustrates the first
example of utilizing [AlkynylPd(II)Ln] complexes to activate and
alkynylate β-C(sp3)–H bonds of carboxylic acid derivatives. The
extension of this method to effect enantioselective C(sp3)–H
alkynylation reactions by the use of optically active NHC and PR3
ligands is currently underway in our laboratory.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Acknowledgements. This work was supported by NSF under
the CCI Center for Selective C-H Functionalization, CHE-
1205646. We gratefully acknowledge The Scripps Research
Institute, and Sigma-Aldrich for financial support. We thank
Bristol-Myers-Squibb (predoctoral fellowship to M.W.), and
Agency for Science, Technology and Research (A*STAR)
Singapore (predoctoral fellowship to K. S. L. C.).
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
References
(1) (a) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. (b) Negishi, E.;
Anastasia, L. Chem. Rev. 2003, 103, 1979. (c) King, A. O.; Yasuda, N.
Top. Organomet. Chem. 2004, 6, 205. (d) Doucet, H.; Hierso, J.-C. Angew.
Chem. Int. Ed. 2007, 46, 834. (e) Plenio, H. Angew. Chem. Int. Ed. 2008,
47, 6954. (f) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084.
(2) (a) Diederich, F.; Stang, P. J.; Tykwinski, R. R.; Acetylene Chemistry:
Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005.
(b) Fürstner, A.; Davies, P. W. Chem. Commun. 2005, 2307. (c) Kolb, H.
C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. (d)
Finn, M. G.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1231.
41
42
43
4
45
46
47
(3) (a) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007,
129, 7742. (b) Gu, Y.; Wang, X. Tetrahedron Lett. 2009, 50, 763. (c) Kim,
S. H.; Chang, S. Org. Lett. 2010, 12, 1868.
48
49
50
51
52
53
(4) (a) Yang, L.; Zhao, L.; Li, C.-J. Chem. Commun. 2010, 46, 4184. (b) Kim,
S. H.; Yoon, J.; Chang, S. Org. Lett. 2011, 13, 1474. (c) Shibahara, F.;
Dohke, Y.; Murai, T. J. Org. Chem. 2012, 77, 5381.
(5) Dudnik, A. S.; Gevorgyan, V. Angew. Chem. Int. Ed. 2010, 49, 2096.
(6) Tobisu, M.; Ano, Y.; Chatani, N. Org. Lett. 2009, 11, 3250.; (b) Kim, S.
H.; Park, S. H.; Chang, S. Tetrahedron 2012, 68, 5162. (c) Ano, Y.;
Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354.
(7) Brand, J. P.; Waser, J. Chem. Soc. Rev. 2012, 41, 4165.
(8) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.
(9) Recent reviews of transition-metal-catalyzed C(sp3)−H functionalization:
(a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42,
1074. (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin,
O. Chem.—Eur. J. 2010, 16, 2654. (c) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (d) Wasa, M.; Engle, K.M.; Yu, J.-Q. Isr. J. Chem.
2010, 50, 605.
54
5
56
57
58
59
(10) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 9886.
60
ACS Paragon Plus Environment