Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Armstrong, R. R. Knowles, J. Am. ChemD. SOoI:c1.02.1001339,/C139C5C, 1075370345B;
(f) D. Uraguchi, N. Kinoshita, T. Kizu, T. Ooi, J. Am. Chem. Soc.
2015, 137, 13768.
In summary, we have developed an enantioconvergent
substitution of 3-substituted 3-chlorooxindoles with N-aryl
glycines via visible light-driven photoredox asymmetric catalysis.
Under the combinatorial use of DPZ as a photoredox catalyst
and SPINOL-CPA as a Brønsted acid catalyst, the SET redox
transformation could generate prochiral α-amide radicals and
α-aminomethylene radicals, and the two distinct odd-electron
partners could then undergo an enantioselective coupling. A
variety of valuable chiral 3-aminomethylene-3-substituted
oxindoles featuring full carbon quaternary stereocentres were
obtained in high yields with good to excellent
enantioselectivities, and the system showed a broad substrate
scope. Among the obtained products, the direct synthesis of
spiro-five- and -six-membered ring-based products, which are
horsfiline and analgesic therapeutic derivatives, underscores
the high efficiency and good compatibility of this method.
This work was financially supported by NSFC (No. 21672052)
and PhD research foundation of Henan University of Technology
(2019BS003).
9
(a) L. Lin, X. Bai, X. Ye, X. Zhao, C.-H. Tan, Z. Jiang, Angew.
Chem. Int. Ed. 2017, 56, 13842; (b) T. Shao, Y. Yin, R. Lee, X.
Zhao, G. Chai, Z. Jiang, Adv. Synth. Catal. 2018, 360, 1754; (c)
L. Bu, J. Li, Y. Yin, B. Qiao, G. Chai, X. Zhao, Z. Jiang, Chem. Asian
J. 2018, 13, 2382; (d) Y. Liu, X. Liu, J. Li, X. Zhao, B. Qiao, Z.
Jiang, Chem. Sci. 2018, 9, 8094; (e) Y. Yin, Y. Dai, H. Jia, J. Li, L.
Bu, B. Qiao, X. Zhao, Z. Jiang, J. Am. Chem. Soc. 2018, 140,
6083; (f) X. Liu, Y. Liu, G. Chai, B. Qiao, X. Zhao, Z. Jiang, Org.
Lett. 2018, 20, 6298; (g) J. Li, M. Kong, B. Qiao, R. Lee, X. Zhao,
Z. Jiang, Nat. Commun. 2018, 9, 2445; (h) K. Cao, S. M. Tan, R.
Lee, S. Yang, H. Jia, X. Zhao, B. Qiao, Z. Jiang, J. Am. Chem. Soc.
2019, 141, 5437; (i) T. Shao, Y. Li, N. Ma, R. Lee, C. Li, G. Chai,
X. Zhao, B. Qiao, Z. Jiang, iScience 2019, 16, 410; (j) B. Qiao, C.
Li, X. Zhao, Y. Yin, Z. Jiang, Chem. Comm. 2019, 55, 7534; (k)
M. Hou, L. Lin, X. Chai, X. Zhao, B. Qiao, Z. Jiang, Chem. Sci.
2019, 10, 6629.
10 H. in Advanced Free Radical Reactions for Organic Synthesis,
Elsevier Science, Amsterdam, 2004, p. 39.
11 F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381.
12 (a) A. Rajasekaran, R. Mahesh, P. Parimoo, Indian J. Heterocy.
Chem. 1998, 8, 151; (b) A. A. Kelemen, A. Adam, G. Satala, A.
J. Bojarski, G. M. Keseru, Bioorg. Med. Chem. Lett. 2018, 28,
2418; (c) A. Jossang, P. Jossang, H. Hadi, T. Sevenet, B. Bode,
J. Org. Chem. 1991, 56, 6527; (d) B. M. Trost, M. K. Brennan,
Org. Lett. 2006, 8, 2027; (e) O.-G. Berge, A. Claesson, B.-M.
Swahn, PCT Int. Appl. 2001, WO 2001005790 A1 20010125. (f)
A. Cañas-Rodriguez, P. R. Leeming, J. Med. Chem. 1972, 15,
762; (g) T. Oost, W. Lubisch, W. Wernet, W. Hornberger, L.
Unger, PCT Int. Appl. 2006, WO 2006100082 A2 20060928.
13 (a) X. Tian, K. Jiang, J. Peng, W. Du, Y.-C. Chen, Org. Lett. 2008,
10, 3583; (b) J.-S. Yu, F. Zhou, Y.-L. Liu, J. Zhou, Synlett 2015,
26, 2491; (c) J. Kaur, S. S. Chimni, S. Mahajan, A. Kumar, RSC
Adv. 2015, 5, 52481; (d) S. Nakamura, S. Takahashi, Org. Lett.
2015, 17, 2590; (e) L.-J. Zhou, Y.-C. Zhang, F. Jiang, G. He, J.
Yan, H. Lu, S. Zhang, F. Shi, Adv. Synth. Catal. 2016, 358, 3069;
(f) W. Guo, Y. Liu, C. Li, Org. Lett. 2017, 19, 1044; (g) F. Jiang,
D. Zhao, X. Yang, F.-R. Yuan, G.-J. Mei, F. Shi, ACS Catal. 2017,
7, 6984; (h) G.-J. Me, F. Shi, Chem. Commun. 2018, 54, 6607.
14 (a) G. A. Russell, C. L. Myers, P. Bruni, F. A. Neugebauer, R.
Blankespoor, J. Am. Chem. Soc. 1970, 92, 2762; (b) R. W.
Bennett, D. L. Wharry, T. H. Koch, J. Am. Chem. Soc. 1980, 102,
2345; (c) F. Li, D. Tian, Y. Fan, R. Lee, G. Lu, Y. Yin, B. Qiao, X.
Zhao, Z. Xiao, Z. Jiang, Nat. Commun. 2019, 10, 1774.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) E. V. Anslyn, D. A. Dougherty, (Eds) in Modern Physical
Organic Chemistry, University Science Books, Sausalito, CA,
2006.
S. R. Hartshorn, in Aliphatic Nucleophilic Subsitution,
Cambridge University Press, London, 1973.
G. C. Fu, ACS Cent. Sci. 2017, 3, 692−700.
2
3
4
(a) S. E. Reisman, A. G. Doyle, E. N. Jacobesen, J. Am. Chem.
Soc. 2008, 130, 7198; (b) S. Ma, X. Han, S. Krishnan, S. C. Virgil,
B. M. Stoltz, Angew. Chem., Int. Ed. 2009, 48, 8037; (c) V. Bhat,
E. R. Welin, X. Gao, B. M. Stoltz, Chem. Rev. 2017, 117, 4528.
For selected reviews see: (a) A. H. Cherney, N. T. Kadunce, S.
E. Reisman, Chem. Rev. 2015, 115, 9587; (b) J. Choi, G. C. Fu,
Science 2017, 356, eaaf7230.
For selected reviews on visible light-driven photoredox
catalysis, see: (a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan,
Chem. Rev. 2013, 113, 5322; (b) M. H. Shaw, J. Twilton, D. W.
C. MacMillan, J. Org. Chem. 2016, 81, 6898; (c) D. Staveness,
R. Bosque, C. R. J. Stephenson, Acc. Chem. Res. 2016, 49, 2295;
(d) B. Qiao, Z. Jiang, ChemPhotoChem, 2018, 2, 703.
(a) D. Staveness, I. Bosque, C. R. J. Stephenson, Acc. Chem.
Res. 2016, 49, 2295; (b) M. Neumann, S. Füldner, B. König, K.
Zeitler, Angew. Chem., Int. Ed. 2011, 50, 951; (c) K. Tahara, Y.
Hisaeda, Green Chem. 2011, 13, 558; (d) T. Maji, A. Karmakar,
O. Reiser, J. Org. Chem. 2011, 76, 736; (e) J. D. Nguyen, E. M.
D’Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem.
2012, 4, 854; (f) J. J. Devery III, J. D. Nguyen, C. Dai, C. R. J.
Stephenson, ACS Catal. 2016, 6, 5962; (g) J. Schmidt, J. Choi,
A. T. Liu, M. Slusarczyk, G. C. Fu, Science, 2016, 354, 1265; (h)
Z. Wang, H. Yin, G. C. Fu, Nature 2018, 563, 379.
For selected reviews on photoredox asymmetric catalysis,
see: (a) R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach,
Angew. Chem. Int. Ed. 2015, 54, 3872; (b) E. Meggers, Chem.
Commun. 2015, 51, 3290; (c) K. L. Skubi, T. R. Blum, T. P. Yoon,
Chem. Rev. 2016, 116, 10035; For selected examples on
enantioselective H-bonding catalysis in photoredox catalysis,
see: (d) A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature
5
6
15 A. Studer, Chem. Eur. J. 2001, 7, 1159.
(a) E. Arceo, I. D. Jurberg, A. Alvarez-Fernandez, P. Melchiorre,
Nat. Chem. 2013, 5, 750; (b) M. Silvi, C. Verrier, Y. P. Rey, L.
Buzzetti, P. Melchiorre, Nat. Chem. 2017, 9, 868; (c) G.
Filippini, M. Silvi, P. Melchiorre, Angew. Chem. Int. Ed. 2017,
56, 4447; (d) D. Mazzarella, G. E. M. Crisenza, P. Melchiorre, J.
Am. Chem. Soc. 2018, 140, 8439; (e) X. Huang, J. Li, T. Shen, K.
Harms, M. Marchini, P. Ceroni, E. Meggers, Angew. Chem. Int.
Ed. 2018, 57, 5454.
7
8
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins