10.1002/anie.201902191
Angewandte Chemie International Edition
COMMUNICATION
In order to clarify the ligand effect on the arylation reaction,
the same reaction using different ligands (L6 vs L1) was
analyzed at various times. As shown in Figure 1, both two
reactions exhibited a remarkable induction period, and the
reaction with L6 had a shorter induction period than that using
L1. Meanwhile, the different reaction rates were observed as
follows: kL6 > kL1, indicating that the ester moiety in L6 had a
significant effect on the reaction. We reasoned that a possible
interaction between the ester group in L6 and ArB(OH)2
promoted the transmetalation step, thus leading to a relative
higher concentration of (L6)CuIIAr species, which could trap
benzylic radicals efficiently. Therefore, a shorter induction period
and faster rate were observed.[22]
Keywords: Asymmetric radical reaction • Copper-Catalyzed •
Benzylic C-H • Arylation • hydrogen atom abstraction
[1]
[2]
(a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752-
6756. (b) T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W.
Krska, Chem. Soc. Rev. 2016, 45, 546-576.
For selected reviews, see: (a) T. G. Saint-Denis, R.-Y. Zhu, G. Chen,
Q.-F. Wu, J.-Q. Yu, Science 2018, 359, 759. (b) H. M. L. Davis, D.
Morton, Chem. Soc. Rev. 2011, 40, 1857-1869. (c) R. Giri, B.-F. Shi, K.
M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev. 2009, 38, 3242-3271.
(d) S.-L. You, Asymmetric Functionalization of C-H Bonds, RSC
Catalysis Series, the Royal Society of Chemistry, Cambridge, UK, 2015.
(a) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947-
3980. (b) P. R. Ortiz de Montellano, Chem. Rev. 2010, 110, 932-948.
For some reviews, see: (a) C.-M. Che, V. K.-Y. Lo, C.-Y. Zhou, J.-S.
Huang, Chem. Soc. Rev. 2011, 40, 1950-1975. (b) H. Lu, X. P. Zhang,
Chem. Soc. Rev. 2011, 40, 1899-1909. (c) X. Huang, J. T. Groves,
Chem. Rev. 2018, 118, 2491-2553. (d) W. Liu, J. T. Groves, Acc. Chem.
Res. 2015, 48, 1727-1735.
[3]
[4]
100
L6
TMPhen
L1
80
[5]
For some reviews, see: (a) M. P. Sibi, S. Manyem, J. Zimmerman,
Chem. Rev. 2003, 103, 3263–3296. (b) F. Wang, P. Chen, G. Liu, Acc.
Chem. Res. 2018, 51, 2036–2046. (c) Q. Lu, F. Glorius, Angew. Chem.
Int. Ed. 2017, 56, 49-51. (d) K. Wang, W. Kong, Chin. J. Chem. 2018,
36, 247-256. For selected examples, see: (e) M. Milan, M. Bietti, M.
Costas, ACS Cent. Sci. 2017, 3, 196-204. (f) J. T. Groves, P. Viski, J.
Am. Chem. Soc. 1989, 111, 8537-8538. (g) R. Zhang, W. Y. Yu, T. S.
Lai, C. M. Che, Chem. Commun. 1999, 1791–1792. (h) M. B. Andrus, Z.
Zhou, J. Am. Chem. Soc. 2002, 124, 8806-8807.
60
40
20
0
0
50
100
150
200
[6]
(a) M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W.C. MacMillan,
Science 2013, 339, 1593-1596. (b) D. K. Ahneman, A. G. Doyle, Chem.
Sci. 2016, 7, 7002-7006. (c) Y. Shen, Y. Gu, R. Martin, J. Am. Chem.
Soc. 2018, 140, 12200-12209.
Reaction Time (hour)
Figure 1. Ligand effect on the reaction of 1a.
[7]
[8]
W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S. Stahl, G.
Liu, Science 2016, 353, 1014-1018.
In conclusion, we have developed a copper-catalyzed
enantioselective arylation of benzylic C-H bonds via radical relay
using alkylarenes as limiting reagent, which provides an efficient
and straightforward approach to various chiral 1,1-diarylalkanes
with good to excellent enantioselectivities. The enhancement of
chemo- and enantioselectivity for the arylation of benzylic C-H
bonds depends on the introduction of a benzyl ester moiety into
bisoxazoline (BOX) ligands. Owing to the limited substrate
scope on alkyl naphthylene substrates of this arylation,[23] further
improving catalytic systems and the mechanism study are still in
progress in our laboratory.
(a) F. Wang, D. Wang, X. Wan, L. Wu, P. Chen, G. Liu, J. Am. Chem.
Soc. 2016, 138, 15547-15550. (b) D. Wang, F. Wang, P. Chen, Z. Lin,
G. Liu, Angew. Chem., Int. Ed. 2017, 56, 2054-2058. (c) D. Wang, N.
Zhu, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 15632-
15635.
[9]
(a) L. Wu, F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem.
Soc. 2017, 139, 2904-2907. (b) D. Wang, L. Wu, F. Wang, X. Wan, P.
Chen, Z. Lin, G. Liu, J. Am. Chem. Soc. 2017, 139, 6811-6814.
[10] For more examples on the copper catalyzed asymmetric radical
transformations, see: (a) R. Zhu, S. L.Buchwald, J. Am. Chem. Soc.
2015, 137, 8069-8077. (b) R. Zhu, S. L.Buchwald, Angew. Chem., Int.
Ed. 2013, 52, 12655-12658. (c) J.-S. Lin, X.-Y. Dong, T.-T. Li, N.-C.
Jiang, B. Tan, X.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 9357–9360. (d)
J.-S. Lin, F.-L. Wang, X.-Y. Dong, W.-W. He, Y. Yuan, S. Chen, X.-Y.
Liu, Nat. Commun. 2017, 8, 14841. (e) X.-T. Li, Q. -S. Gu, X.-Y. Dong,
X. Meng, X.-Y. Liu, Angew. Chem., Int. Ed. 2018, 57, 7668-7672. (f) J.-
S. Lin, T.-T. Li, J.-R. Li, G.-Y. Jiao, Q.-S. Gu, J.-T. Cheng, Y.-L. Guo, X.
Hong, X.-Y. Liu, J. Am. Chem. Soc. 2019, 141, 1074-1083.
[11] For recent advances in the asymmetric sp3 C-H arylation by metal-
catalyzed C-H activation, see: (a) F.-L. Zhang, K. Hong, T.-J. Li, H.
Park, J.-Q. Yu, Science 2016, 351, 252-256. (b) H. Wang, H.-R. Tong,
G. He, G. Chen, Angew. Chem., Int. Ed. 2016, 55, 15387-15391. (c) S.-
B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458-2461. (d) J. H.
Kim, S. Greßies, M. Boultadakis-Arapinis, C. Daniliuc, F. Glorius, ACS
Catal. 2016, 6, 7652-7656. (e) G. Chen, T. Shigenari, P. Jain, Z. Zhang,
Z. Jin, J. He, S. Li, C. Mapelli, M. M. Miller, M. A. Poss, P. M. Scola, K.-
S. Yeung, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 3338-3351. (f) J. He,
S. Li, Y. Deng, H. Fu, B. N. Laforteza, J. E. Spangler, A. Homs, J.-Q.
Yu, Science 2014, 343, 1216-1220. (g) G. Chen, W. Gong, Z. Zhuang,
M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F. Yang, T. Liu, K. N. Houk, J.-Q.
Yu, Science, 2016, 353, 1023-1027.
Acknowledgements
We are grateful for financial support from the National Basic
Research Program of China (973-2015CB856600), the National
Nature Science Foundation of China (NFSC, Nos. 21532009,
21790330, 21821002 and 21761142010), the Science and
Technology Commission of Shanghai Municipality (Nos.
17XD1404500, 17QA1405200 and 17JC1401200), and the
strategic Priority Research Program (No. XDB20000000) and
the
Key
Research
Program
of
Frontier
Science
(QYZDJSSWSLH055) of the Chinese Academy of Sciences.
This research was also partially supported by CAS
Interdisciplinary Innovation Team.
This article is protected by copyright. All rights reserved.