M. Sivaraman et al. / Tetrahedron Letters 54 (2013) 1507–1509
1509
We planned further transformation of 2-(bromomethyl)furans
(3a), where the presence of the C–Br bond provided an easy access
to other useful organic scaffolds. The product 3a is easily aminated
by treatment with BnNH2 in CH2Cl2 at room temperature to afford
6 in 92% yield (Scheme 3, Eq. 1).9 The product 3a when treated
with acetone and water followed by propargylation led to 6,7-
dihydro-6,6-dimethyl-2-((prop-2-ynyloxy)methyl)benzofuran-
4(5H)-one (7) with overall yield 86% (Scheme 3, Eq. 2).9,10 From the
literature review we found that the ring transformation of 2-
((prop-2-ynyloxy)methyl)furan lead to the Hashmi phenol.10,11
To examine this, we have chosen PtCl2 as the catalyst for this trans-
formation. Treatment of 7 with 5 mol % of PtCl2 in acetone at 50 °C
affords 7,8-dihydro-9-hydroxy-7,7-dimethylnaphtho[2,3-c]furan-
5(1H,3H,6H)-one (Hashmi phenol, 8), isolated yield 83% (Scheme 3,
Eq. 3). The treatment of 7 with 5 mol % of PtCl2 in aq acetone at
50 °C afforded 62% of hydrated product 9 along with 10% of 8
(Scheme 3, Eq. 4).
In conclusion, we have developed a facile one pot, base and sol-
vent-free pathway for the synthesis of 2-(bromomethyl)furans di-
rectly from in situ generated 1,3-dicarbonyl iodonium ylide. This
reaction involves readily available starting materials, high atom-
economy, low catalyst loading, and tolerates a wide scope of sub-
strates to afford medium to good yield. The product 3a is a useful
key intermediate in the synthesis of furoscrobiculin B12 and further
transformation of 3a is also achieved. Subsequent research will fo-
cus on application of this methodology to access five-membered
heterocycles.
7, 8, 9) associated with this article can be found, in the online ver-
References and notes
1. (a) Choi, D. H.; Hwang, J. W.; Lee, H. S.; Yang, D. M.; Jun, J.-G. Bull. Korean Chem.
Soc. 2008, 29, 1594; (b) Zidorn, C.; Ellmerer-Müller, E.-P.; Stuppner, H. Helv.
Chim. Acta 2000, 83, 2920; (c) Li, X.; Ovaska, T. V. Org. Lett. 2007, 9, 3837; (d)
Xie, W.-D.; Li, X.; Weng, C.-W.; Liu, S.-S.; Row, K. H. Chem. Pharm. Bull. 2011, 59,
511.
2. (a) Basaria, S.; Cooper, D. S. Am. J. Med. 2005, 118, 706; (b) Marion, F.; Williams,
D. E.; Patrick, B. O.; Hollander, I.; Mallon, R.; Kim, S. C.; Roll, D. M.; Feldberg, L.;
Soest, R. V.; Andersen, R. J. Org. Lett. 2006, 8, 321; (c) Yang, Z.; Liu, H. B.; Lee, C.
M.; Chang, H. M.; Wong, H. N. C. J. Org. Chem. 1992, 57, 7248; (d) Carlsson, B.;
Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y.-L.; Mellin, C.; Malm, J. J. Med. Chem.
2002, 45, 623; (e) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45,
2670; (f) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am.
Chem. Soc. 1996, 118, 10766; (g) Cambie, R. C.; Rutledge, P. S.; Yang, X.-S.;
Bergquist, P. R. J. Nat. Prod. 1998, 61, 1416; (h) Gaspar, H.; Santos, S.; Carbone,
M.; Rodrigues, A. S.; Rodrigues, A. I.; Uriz, M. J.; Feio, S. M. S.; Melck, D.;
Humanes, M.; Gavagnin, M. J. Nat. Prod. 2008, 71, 2049.
3. (a) Hu, Y.; Zhang, Y.; Yang, Z.; Fathi, R. J. Org. Chem. 2002, 67, 2365; (b)
Nakamura, M.; Llies, L.; Otsubo, S.; Nakamura, E. Org. Lett. 2006, 8, 2803; (c)
Zhou, L.; Shi, Y.; Xiao, Q.; Liu, Y.; Ye, F.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13,
968; (d) Praveen, C.; Kiruthiga, P.; Perumal, P. T. Synlett 2009, 1990.
4. (a) Koser, G. F.; Yu, S.-M. J. Org. Chem. 1975, 40, 1166; (b) Zhu, C.; Yoshimura, A.;
Solntsev, P.; Ji, L.; Wei, Y.; Nemykin, V. N.; Zhdankin, V. V. Chem. Commun. 2012,
48, 10108; (c) Asouti, A.; Hadjiarapoglou, L. P. Tetrahedron Lett. 1998, 39, 9073.
5. (a) Lee, Y. R.; Yoon, S. H.; Seo, Y.; Kim, B. S. Synthesis 2004, 2787; (b) Gogonas, E.
P.; Hadjiarapoglou, L. P. Tetrahedron Lett. 2000, 41, 9299.
6. Hadjiarapoglou, L. P. Tetrahedron Lett. 1987, 28, 4449.
7. (a) Hayasi, Y.; Okada, T.; Kawanisi, M. Bull. Chem. Soc. Jpn. 1970, 43, 2506; (b)
Schank, K.; Lick, C. Synthesis 1983, 392; (c) Moriarty, R. M.; Tyagi, S.; Ivanov, D.;
Constantinescu, M. J. Am. Chem. Soc. 2008, 130, 7564.
8. (a) Padwa, A.; Austin, D. J.; Xu, S. L. J. Org. Chem. 1992, 57, 1330; (b) Hoye, T. R.;
Dinsmore, C. J. Tetrahedron Lett. 1991, 32, 3755.
Acknowledgment
9. Zhou, W.; Xie, C.; Han, J.; Pan, Y. Org. Lett. 2012, 14, 4766.
10. Martín-Matute, B.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed.
2001, 40, 4754.
One of the authors, M.S. thanks the Council of Scientific and
Industrial Research, New Delhi, India for the research fellowship.
11. (a) Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem.
Soc. 2003, 125, 5757; (b) Chen, Y.; Liu, Y. J. Org. Chem. 2011, 76, 5274; (c) Chen,
Y.; Yan, W.; Akhmedov, N. G.; Shi, X. Org. Lett. 2010, 12, 344; (d) Hashmi, A. S.
K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553; (e) Hashmi, A. S.
K.; Frost, T. M.; Bats, J. W. Org. Lett. 2001, 3, 3769; (f) Hashmi, A. S. K.; Blanco, M.
Supplementary data
´
C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 7009.
Supplementary data (experimental procedures, analytical data
12. Ogino, T.; Kurihara, C.; Baba, Y.; Kanematsu, K. J. Chem. Soc., Chem. Commun.
1979, 1994.
13
and scanned copies of 1H and C NMR of compound 3a–l, 3l0, 6,