ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Multisubstituted Pyridines
Zhi He, Dennis Dobrovolsky, Piera Trinchera, and Andrei K. Yudin*
Davenport Research Laboratories, Department of Chemistry, University of Toronto,
80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
Received November 28, 2012
ABSTRACT
By utilizing amino allenes, aldehydes, and aryl iodides as readily available building blocks, a simple and modular synthesis of multisubstituted
pyridines with flexible control over the substitution pattern has been achieved. The method employs a two-step procedure involving the
preparation of “skipped” allenyl imines and a subsequent palladium-catalyzed cyclization.
Pyridines have a range of applications in many areas of
chemistry.1 They are not only found in the structural cores
of numerous pharmaceutical compounds2 and natural
products3 but are also widely used as building blocks in the
preparation of chiral ligands4 and new materials with im-
portant photo- or electrochemical properties.5 Consequently,
efficient preparation of highly substituted pyridine deriva-
tives representsa worthwhile goaloforganicsynthesis. The
majority of synthetic routes to pyridine rings are based on
either reactions between amines and carbonyl compounds,6
metal-catalyzed multicomponent formal cycloadditions,7,8
or cycloisomerisation reactions.9 Despite the numerous
studies and applications that have appeared in the litera-
ture, most of the protocols still suffer from one or more
important limitations. New or improved synthetic meth-
ods to gain easy access to pyridine structures, particularly
with flexible control of substitution pattern, are therefore
much sought-after. Herein, we describe an efficient and
modular synthesis of highly substituted pyridines from read-
ily available R-amino allenes, aldehydes, and aryl halides.
(1) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-Blackwell:
Oxford, UK, 2010.
(2) For examples, see: (a) Pharmaceutical Chemistry, Drug Synthesis;
Roth, H. J., Kleemann, A., Eds.; Prentice Hall Europe: London, 1988; Vol. 1,
p 407. (b) Kletsas, D.; Li, W.; Han, Z.; Papadopoulos, V. Biochem.
Pharmacol. 2004, 67, 1927. (c) Basnet, A.; Thapa, P.; Karki, R.; Na, Y.;
Jahng, Y.; Jeong, B.-S.; Jeong, T. C.; Lee, C.-S.; Lee, E.-S. Bioorg. Med.
Chem. 2007, 15, 4351.
(3) (a) The Chemistry of Heterocyclic Compounds; Coppola, G. M.,
Schuster, H. F., Eds.: Wiley-VCH: New York, 1981. (b) Michael, J. P. Nat.
Prod. Rep. 2005, 22, 627. (c) Plunkett, A. O. Nat. Prod. Rep. 1994, 11,
581. (d) Daly, J. W.; Pinder, A. R. Nat. Prod. Rep. 1992, 9, 491. (e)
Spande, T. F. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York,
1987; Vol. 31.
(7) For recent examples, see: (a) Kumar, P.; Prescher, S.; Louie, J.
Angew. Chem., Int. Ed. 2011, 50, 10694. (b) Wang, Y.-F.; Toh, K. K.; Ng,
E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 6411. (c) Ohashi, M.;
Takeda, I.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 18018.
(d) Wang, C.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int. Ed. 2011, 50,
7162. (e) Ren, Z.-H.; Zhang, Z.-Y.; Yang, B.-Q.; Wang, Y.-Y.; Guan
Z.-H. Org. Lett. 2011, 13, 5394. (f) Hyster, T. K.; Rovis, T. Chem.
Commun. 2011, 47, 11846. (g) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.;
Chiba, S. Synlett 2011, 2789. (h) Donohoe, T. J.; Basutto, J. A.; Bower,
J. F.; Rathi, A. Org. Lett. 2011, 13, 1036. (i) Donohoe, T. J.; Bower, J. F.;
Baker, D. B.; Basutto, J. A.; Chan, L. K. M.; Gallagher, P. Chem.
Commun. 2011, 47, 10611. (j) Yuan, C.; Chang, C.-T.; Axelrod, A.;
Siegel, D. J. Am. Chem. Soc. 2010, 132, 5924.
(4) For examples, see: (a) Durola, F.; Sauvage, J. P.; Wenger, O. S.
€
Chem. Commun. 2006, 171. (b) Sweetman, B. A.; Muller-Bunz, H.;
Guiry, P. J. Tetrahedron Lett. 2005, 46, 4643. (c) Kozhevnikov, V. N.;
Kozhevnikov, D. N.; Nikitina, T. V.; Rusinov, V. L.; Chupakhin, O. N.;
Zabel, M.; Koenig, B. J. Org. Chem. 2003, 68, 2882.
(5) For examples, see: (a) Tang, B.; Yu, F.; Li, P.; Tong, L.; Duan, X.;
Xie, T.; Wang, X. J. Am. Chem. Soc. 2009, 131, 3016. (b) Havas, F.;
Leygue, N.; Danel, M.; Mestre, B.; Galaup, C.; Picard, C. Tetrahedron
2009, 65, 7673. (c) Yan, B.-P.; Cheung, C. C. C.; Kui, S. C. F.; Xiang,
H. F.; Roy, V. A. L.; Xu, S.-J.; Che, C.-M. Adv. Mater. 2007, 19, 3599.
For a review, see: (d) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev.
2000, 100, 3553.
ꢀ
(8) For reviews, see: (a) Domınguez, G.; Perez-Castells, J. Chem. Soc.
ꢀ
Rev. 2011, 40, 3430. (b) Varela, J. A.; Saa, C. Synlett 2008, 2571. (c)
ꢀ
Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
ꢀ
(6) For examples, see: (a) Allais, C.; Lieby-Muller, F.; Constantieux,
T.; Rodriguez, J. Adv. Syn. Catal. 2012, 354, 2537. (b) Tenti, G.; Ramos,
M. T.; Menendez, J. C. ACS Comb. Sci. 2012, 14, 551. (c) Allais, C.;
(9) For recent examples, see: (a) Nakamura, I.; Zhang, D.; Terada,
M. J. Am. Chem. Soc. 2010, 132, 7884. (b) Zhu, J. L.; Su, Y. L.; Chan,
Y. H.; Chen, I. C.; Liao, C. C. Heterocycles 2009, 78, 369. (c) Gao, H.;
Zhang, J. Adv. Synth. Catal. 2009, 351, 85. (d) Cacchi, S.; Fabrizi, G.;
Filisti, E. Org. Lett. 2008, 10, 2629. (e) Movassaghi, M.; Hill, M. D.
J. Am. Chem. Soc. 2006, 128, 4592.
ꢀ
Constantieux, T.; Rodriguez, J. Chem.;Eur. J. 2009, 15, 12945. (d)
ꢀ
Lieby-Muller, F.; Allais, C.; Constantieux, T.; Rodriguez, J. Chem.
Commun. 2008, 4207. (e) Sausins, A.; Duburs, G. Heterocycles 1988, 27,
269. (f) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
r
10.1021/ol303246b
XXXX American Chemical Society