ChemComm
Communication
padanamide A; [a]2D5 À21.5, c 7.3, MeOH, for padanamide B), which
led us to conclude that synthetic 1 and 2 were of the same absolute
stereochemistry as natural padanamides A and B.
In summary, we have accomplished the total synthesis of padan-
amides A and B from the known azidoester 9 in 7.1 and 8.3% overall
yield, respectively, with the longest linear sequence of 12 steps. This
synthesis confirmed the structures of padanamides A and B. The
extension of this chemistry toward the synthesis of padanamide
analogues for further biological evaluation is underway and will be
reported in due course.
We acknowledge financial support from the Hong Kong
Research Grants Council (Projects: PolyU 5040/10P; PolyU 5037/
11P, PolyU 5020/12P); Fong Shu Fook Tong Foundation and Joyce
M. Kuok Foundation; The Hong Kong Polytechnic University
(PolyU 5636/08M; PolyU 5634/09M); The National Science Founda-
tion of China (21072007, 21133002 & 21272011); The Shenzhen
Bureau of Science, Technology & Information (JC200903160367A,
JC201005260102A, JC201005260220A, ZYC201105170351A and
ZD200806170044A).
Scheme 7 (a) ClCO2iBu, NMM, THF; then 7, À20 1C–rt; (b) H2, Pd/C, MeOH.
Scheme 8 (a) NaH, tert-butylisocyanate, THF, 0 1C; (b) TFA, anisole, D 16 h.
Notes and references
1 (a) S. B. Zotchev, J. Biotechnol., 2012, 158, 168–175; (b) R. Subramani
and W. Aalbersberg, Microbiol. Res., 2012, 167, 571–580.
Scheme 9 (a) DCC, HOSu, THF–DMF, À78 1C–rt; then CHCl3, D 3 h; (b) H2, Pd/C
(10%), MeOH, rt, 2 h.
2 S. Dharmaraj, World J. Microbiol. Biotechnol., 2010, 26, 2123–2139.
3 (a) L. Dai, B. Chen, H. H. Lei, Z. Wang, Y. Q. Liu, Z. S. Xu and T. Ye,
Chem. Commun., 2012, 48, 8697–8699; (b) M. Wang, X. Feng, L. Cai,
Z. Xu and T. Ye, Chem. Commun., 2012, 48, 4344–4346; (c) J. Liu,
X. Ma, Y. Liu, Z. Wang, S. Kwong, Q. Ren, S. Tang, Y. Meng, Z. Xu and
T. Ye, Synlett, 2012, 783–787; (d) L. Wang, Z. S. Xu and T. Ye, Org. Lett.,
2011, 13, 2506–2509; (e) H. Liu, Y. Q. Liu, Z. S. Xu and T. Ye, Chem.
Commun., 2010, 46, 7486–7488; ( f ) X. G. Gao, Y. Q. Liu, S. Q. Kwong,
Z. X. Xu and T. Ye, Org. Lett., 2010, 12, 3018–3021; (g) S. Li, Z. Chen,
Z. S. Xu and T. Ye, Chem. Commun., 2010, 46, 4773–4775; (h) Z. Chen,
L. Song, Z. S. Xu and T. Ye, Org. Lett., 2010, 12, 2036–2039; (i) Y. Jin,
Y. Q. Liu, Z. Wang, S. Q. Kwong, Z. S. Xu and T. Ye, Org. Lett., 2010, 12,
1100–1103; ( j) S. Liang, Z. S. Xu and T. Ye, Chem. Commun., 2010, 46,
153–155; (k) B. Chen, L. Dai, H. Zhang, W. Tan, Z. S. Xu and T. Ye,
Chem. Commun., 2010, 46, 574–576; (l) S. Li, S. Liang, W. Tan, Z. S. Xu
and T. Ye, Tetrahedron, 2009, 65, 2695–2702; (m) S. Li, S. Liang,
Z. S. Xu and T. Ye, Synlett, 2008, 569–574; (n) Q. Ren, L. Dai, H. Zhang,
W. Tan, Z. S. Xu and T. Ye, Synlett, 2008, 2379–2383; (o) Z. Y. Chen
and T. Ye, New J. Chem., 2006, 30, 518–520; (p) H. W. Pang, Z. S. Xu, Z. Y.
Chen and T. Ye, Lett. Org. Chem., 2005, 2, 699–702; (q) H. W. Pang,
Z. S. Xu and T. Ye, Lett. Org. Chem., 2005, 2, 703–706; (r) H. Chen, Z. S. Xu
and T. Ye, Tetrahedron, 2005, 61, 11132–11140; (s) Z. Y. Chen, J. G.
Deng and T. Ye, ARKIVOC, 2003, (Part VII), 268–285; (t) Y. G. Peng,
H. W. Pang and T. Ye, Org. Lett., 2004, 6, 3781–3784; (u) Z. S. Xu,
Y. G. Peng and T. Ye, Org. Lett., 2003, 5, 2821–2824.
tert-butylisocyanate in THF afforded urea 28 in 60% yield. Acidic
cleavage of both the tert-butyl and Cbz groups in 28 gave rise to the
required intermediate 4 in 80% yield (Scheme 8). (S)-N-Cbz-
a-aminoimide 5 was obtained in 67% yield in a two-step sequence
including a DCC-mediated intramolecular cyclization of N-Cbz-
L-glutamine leading to adduct 30, and subsequent hydrogenolytic
removal of the carboxybenzyl group (Scheme 9).
At this juncture, the time had arrived to assemble the key
intermediate 3 with Aopc (4) or Apd (5) leading to padanamides A
and B, respectively. Thus, saponification of the methyl ester of 3
followed by coupling with (S)-3-amino-2-oxopyrrolidine-1-carbox-
amide (Aopc) (4) and cleavage of TBS ether provided padanamide
A 1 in 35% yield over three steps. Under identical conditions,
padanamide B was obtained in 45% overall yield from the
condensation of 3 and 5 (Scheme 10). The spectral data for
synthetic 1 and 2 (1H, 13C NMR and HMRS) were identical with
those published for the natural products, and the optical rotation
of our products ([a]2D5 À11.4, c 0.2, MeOH, for padanamide A;
[a]2D5 À20.7, c 0.2, MeOH, for padanamide B) corresponded
well with the literature value (lit. [a]2D5 À10.7, c 5.2, MeOH, for
4 D. E. Williams, D. S. Dalisay, B. O. Patrick, T. Matainaho, K. Andrusiak,
R. Deshpande, C. L. Myers, J. S. Piotrowski, C. Boone, M. Yoshida and
R. J. Andersen, Org. Lett., 2011, 13, 3936–3939.
5 K. J. Hale, S. Manaviazar and V. M. Delisser, Tetrahedron, 1994, 50,
9181–9188.
6 Y. Henmi, K. Makino, Y. Yoshitomi, O. Hara and Y. Hamad,
Tetrahedron: Asymmetry, 2004, 15, 3477–3481.
7 M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J. Grabowski
and P. J. Reider, J. Org. Chem., 1999, 64, 2564–2566.
8 (a) M. A. Ciufolini, T. Shimizu, S. Swaminathan and N. Xi, Tetra-
hedron Lett., 1997, 38, 4947–4950; (b) M. A. Ciufolini and N. Xi,
Chem. Soc. Rev., 1998, 27, 437–445.
9 (a) K. J. Hale, S. Manaviazar, J. H. George, M. A. Walters and S. A. Dalby,
Org. Lett., 2009, 11, 733–736; (b) K. J. Hale, S. Manaviazar, L. Lazarides,
J. George, M. A. Walters, J. Cai, V. M. Delisser, G. S. Bhatia, S. A. Peak,
S. M. Dalby, A. Lefranc, Y.-N. P. Chen, A. W. Wood, P. Crowe, P. Erwin
and M. El-Tanani, Org. Lett., 2009, 11, 737–740.
10 T. Shibue, T. Hirai, I. Okamoto, N. Morita, H. Masu, I. Azumaya and
O. Tamura, Chem.–Eur. J., 2010, 16, 11678–11688.
11 M. R. Leanna, T. J. Sowin and H. E. Morton, Tetrahedron Lett., 1992,
33, 5029–5032.
Scheme 10 (a) LiOH, THF–MeOH–H2O; (b) BOPCl, 4 or 5, HOAT, NMM, THF, 0 1C–rt,
18 h; (c) 40% HF, MeCN, 0 1C, 3 h. BOPCl: bis(2-oxo-3-oxazolidinyl)phosphinic chloride.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 2977--2979 2979