1864
B. Y. Bhong et al. / Tetrahedron Letters 54 (2013) 1862–1865
O
R
O
R
O
R
O
H
R
-AcOH
-PhI
H
S
R1
N
R1
N
R1
N
Ph
I
-AcOH
R1
N
OAc
OAc
Ph
O
I
N
6
SH
N
H
N
H
5
S
N
S
4
OAc
H
3
1
R
O
R
N
N
O
R
N
R
O
-AcOH
-PhI
-S
H
S
N
R1
R1
R1
N
N
R1
PhI(OAc)2
-AcOH
OAc
Ph
N
H
1
S
I
S
N
H
7
2
Scheme 2. Plausible mechanism for oxidation–desulfurization process.
14. Mn(OAc)3: (a) Akhtar, M. S.; Seth, M.; Bhaduri, A. P. Ind. J. Chem. 1987, 26B, 556;
PhI(OAc)2: (b) Karade, N. N.; Gampawar, S. V.; Tale, N. P.; Kedar, S. B. J.
Heterocycl. Chem. 2010, 47, 740; MnO2 and then oxone: (c) Matloobi, M.; Kappe,
C. O. J. Comb. Chem. 2007, 9, 285.
atom in the oxidative dimerization process of 3,4-dihydropyrimi-
dine-2(1H)-thione.
15. Kim, S. S.; Choi, B. S.; Lee, J. H.; Lee, K. K.; Lee, T. H.; Kim, Y. H.; Shin, H. Synlett
2009, 599.
Acknowledgments
16. Hayashi, M.; Okunaga, K.-I.; Nishida, S.; Kawamura, K.; Eda, K. Tetrahedron Lett.
2010, 51, 6734.
17. Atwal, K. S.; Rovnyak, G. C.; Schwartz, J.; Moreland, S.; Hedberg, A.; Gougoutas,
J. Z.; Malley, M. F.; Floyd, D. M. J. Med. Chem. 1990, 33, 1510.
The authors are thankful to the Department of Science and
Technology, New Delhi, India (No. SR/S1/OC-72/2009) for the
financial support. The authors are also grateful to SAIF, Punjab
University, Chandigarh, India, for recording the NMR spectra.
18. Representative procedure for the preparation of 2-(1,4-dihydropyrimidin-2-
ylthio)pyrimidine derivatives: DIB (0.386 g, 1.2 mmol) was added to a solution
of 1a (0.276 g, 1 mmol) in acetic acid (10 mL) and the reaction mixture was
stirred at rt for 6 h. The progress of the reaction was monitored by TLC. After
completion of reaction, water (10 mL) was added and the mixture was
extracted with ethyl acetate (3 Â 10 mL). Organic layers were combined, dried
over anhydrous Na2SO4 and concentrated in vacuo. The resulting residue was
purified by column chromatography on silica gel using petroleum ether/EtOAc
9:1 as eluent to give the desired product 2a (0.887 g, 86%) as yellow solid in
excellent purity.
Supplementary data
Supplementary data (copies of NMR (1H and 13C) NMR spectra
and LCMS are provided for all the compounds synthesized) associ-
ated with this article can be found, in the online version, at http://
19. Characterization data new compounds:
Compound 2a: Yellow solid, mp 162–163 °C. 1H NMR 400 MHz (CDCl3): d 1.08
(3H, t, J = 7.1 Hz, CH3), 1.15 (3H, t, J = 7.1 Hz, CH3), 2.39 (3H, s, CH3), 2.42 (3H, s,
CH3), 3.99 (2H, q, J = 7.1 Hz, CH2), 4.06 (2H, q, J = 7.1 Hz, CH2), 5.46 (1H, s, CH),
6.20 (1H, s, NH), 7.29–7.33 (8H, m, ArH), 7.45–7.48 (2H, m, ArH). 13C NMR
100 MHz (CDCl3): d 14.07, 14.09, 22.85, 23.25, 56.11, 59.68, 60.30, 102.71,
106.43, 127.10, 127.43, 128.09, 128.28, 128.44, 128.67, 128.92, 129.15, 139.61,
140.06, 148, 97, 153.37, 156.32, 158.52, 165.49, 165.79. IR (cmÀ1): 2976, 1707,
1606, 1504, 1230, 810, 686. MS (ESI) m/z (M+H)+ Calculated for C28H28N4O4S:
516.18. Found: 517.10.
References and notes
1. For selected reviews, see: (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96,
1123; (b) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315; (c) Zhdankin, V. V.; Stang,
P. J. Chem. Rev. 2002, 102, 2523; (d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008,
108, 5299.
2. (a) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656; (b) Moriarty, R. M. J. Org.
Chem. 2005, 70, 2893.
3. (a) Zhdankin, V. V. J. Org. Chem. 2011, 76, 1185; (b) Stang, P. J. J. Org. Chem. 2003,
68, 2997.
4. Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: London,
1997. Chapter 3.
5. Kita, Y.; Okuno, T.; Tohma, H.; Akai, S.; Matsumoto, K. Tetrahedron Lett. 1994,
35, 2717.
6. (a) Patil, P. C.; Bhalerao, D. S.; Dangate, P. S.; Akamanchi, K. G. Tetrahedron Lett.
2009, 50, 5820; (b) Yan, M.; Chen, Z.-C.; Zheng, Q.-G. J. Chem. Res. (S) 2003, 618;
(c) Cheng, D.-P.; Chen, Z.-C. Synth. Commun. 2002, 32, 2155.
7. (a) Singh, C. B.; Ghosh, H.; Murru, S.; Patel, B. K. J. Org. Chem. 2008, 73, 2924; (b)
Chaudhari, P. S.; Dangate, P. S.; Akamanchi, K. G. Synlett 2010, 3065; (c)
Dangate, P. S.; Akamanchi, K. G. Tetrahedron Lett. 2012, 53, 6765; (d) Chaudhari,
P. S.; Pathare, S. P.; Akamanchi, K. G. J. Org. Chem. 2012, 77, 3716.
8. (a) Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y. Tetrahedron Lett. 1998, 39,
4547; (b) Ozanne-Beaudenon, A.; Quideau, S. Tetrahedron Lett. 2006, 47, 5869.
9. (a) Kita, Y.; Takeda, Y.; Okuno, T.; Egi, M.; Iio, K.; Kawaguchi, K.-I.; Akai, S. Chem.
Pharm. Bull. 1887, 1997, 45; (b) Prakash, O.; Kaur, H.; Pundeer, R.; Dhillon, R. S.;
Singh, S. P. Synth. Commun. 2003, 33, 4037; (d) Mico, A. D.; Margarita, R.;
Mariani, A.; Piancatelli, G. Tetrahedron Lett. 1889, 1996, 37.
Compound 2b: Yellow solid, mp 130–132 °C. 1H NMR 400 MHz (CDCl3): d 1.14
(3H, t, J = 7.1 Hz, CH3), 1.22 (3H, t, J = 7.1 Hz, CH3), 2.25 (3H, s, CH3), 2.38 (6H, s,
CH3), 2.42 (3H, s, CH3), 4.03 (2H, q, J = 7.1 Hz, CH2), 4.12 (2H, q, J = 7.1 Hz, CH2),
5.34(1H, s, CH), 6.20(1H, s, NH), 6.68 (2H, d, J = 8.1 Hz, ArH), 6.82 (2H, d,
J = 7.8 Hz, ArH), 7.12 (2H, d, J = 7.9 Hz, ArH), 7.30 (2H, d, J = 8.1 Hz, ArH). 13C
NMR 100 MHz (CDCl3): d 14.16, 21.22, 21.28, 22.84, 23.14, 55.58, 59.90, 59.97,
60.36, 104.18, 106.50, 127.07, 129.28, 136.24, 137.67, 138.27, 138.64, 150.91,
153.70, 155.56, 158.45, 165.70, 165.96. IR (cmÀ1): 2977, 1699, 1615, 1507,
1237, 820, 698. MS (ESI) m/z (M+H)+ Calcd C30H32N4O4S: 544.21. Found:
545.10.
Compound 2c: Yellow solid, mp 149–150 °C. 1H NMR 400 MHz (CDCl3): d 1.04
(3H, t, J = 7 Hz, CH3), 1.20 (3H, t, J = 7.1 Hz, CH3), 2.32 (6H, s, CH3), 3.34 (2H, s),
3.65 (2H, s), 3.82 (1H, s), 3.89 (1H, s), 3.96 (2H, q, J = 7.1 Hz, CH2), 4.03 (2H, q,
J = 7.1 Hz, CH2), 5.89 (1H, s, CH), 6.30 (1H, s, NH), 6.64 (1H, d, J = 8.1 Hz, ArH),
6.79 (1H, d, J = 8.2 Hz, ArH), 6.84 (1H, d, J = 6.7 Hz, ArH), 6.85–6.94 (2H, m,
ArH), 7.17–7.25 (2H, m, ArH), 7.27 (1H, d, J = 7.6 Hz, ArH). 13C NMR 100 MHz
(CDCl3): d 14.12, 14.18, 22.92, 23.07, 55.35, 59.99, 60.05, 101.94, 110.86,
110.95, 119.47, 119.68, 121.11, 121.33, 126.79, 129.28, 130.36, 157.63, 158.01,
159.22, 159.58, 165.97, 166.02, 166.10, 166.18. IR (cmÀ1): 2982, 1694, 1610,
1504, 1230, 743, 691. MS (ESI) m/z (M+H)+ Calcd C30H32N4O6S: 576.20. Found:
577.00
Compound 2d: Yellow solid, mp 104–105 °C. 1H NMR 400 MHz (CDCl3): d 1.15
(3H, t, J = 7.2 Hz, CH3), 1.21 (3H, t, J = 7.1 Hz, CH3), 2.40 (6H, s, CH3), 3.55 (3H, s,
CH3), 3.75 (3H, s, CH3), 4.06 (2H, q, J = 7 Hz, CH2), 4.14 (2H, q, J = 7.2 Hz, CH2),
5.39 (1H, s, CH), 6.24 (1H, s, NH), 6.39 (1H, d, J = 6.7 Hz, ArH), 6.51 (1H, t,
J = 6.7 Hz, ArH), 6.73 (1H, d, J = 8.1 Hz, ArH), 6.85 (1H, d, J = 8.2 Hz, ArH), 6.94–
6.98 (2H, m, ArH), 7.01(1H, t, J = 6.7 Hz), 7.20 (1H, t, J = 7.9 Hz, ArH). 13C NMR
100 MHz (CDCl3): d 14.16, 14.17, 22.92, 23.24, 54.98, 55.13, 55.67, 60.37,
103.67, 106.14, 112.54, 113.36, 114.39, 114.51, 119.23, 120.10, 129.40, 129.84,
140.65, 141.95, 150.48, 158.07, 159.40, 159.69, 165.63, 165.85. IR (cmÀ1):
2980, 1703, 1600, 1511, 1226, 779, 698. MS (ESI) m/z (M+H)+ Calcd
10. Reviews: (a) Kappe, C. O. Tetrahedron 1993, 49, 6937; (b) Kappe, C. O. Acc. Chem.
Res. 2000, 33, 879; (c) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
11. (a) Brown, D. J. The Pyrimidines. In Chemistry of Heterocyclic Compdounds;
Wiley: New York, NY, 1994; (b) Majumdar, K. C.; Das, U.; Jana, N. K. J. Org.
Chem. 1998, 63, 3550. and more references therein; (c) Rizzo, R. C.; Tirado-
Rives, J.; Jorgensen, W. L. J. Med. Chem. 2001, 44, 145; (d) Chen, C.; Wilcoxen, K.
M.; Huang, C. Q.; Xie, Y.-F.; McCarthy, J. R.; Webb, T. R.; Zhu, Y.-F.; Saunders, J.;
Liu, X.-J.; Chen, T.-K.; Bozigian, H.; Grigoriadis, D. E. J. Med. Chem. 2004, 47,
4787.
12. The oxidative aromatization of 3,4-dihydropyrimidine-2(1H)-one is reported
by using HNO3, DDQ, Pd/C, TBHP/CuCl2, CAN/NaHCO3, Co(NO3)2/K2S2O8,
K2S2O8/ultrasound, TBHP/PhI(OAc)2, PCC, NaNO2, Ca(OCl)2, rhenium(I)
complexes/photochemical conditions and N-hydroxyphthalimide (NHPI)/
Co(OAc)2/O2. Review: Suresh; Sandhu, J. S. ARKIVOC 2012, i, 66–133 and the
references cited therein.
C
30H32N4O6S: 576.2; Found: 577
Compound 2e: Yellow solid, mp 154–156 °C. 1H NMR 400 MHz (CDCl3): d 1.14
(3H, t, J = 7.1 Hz, CH3), 1.21(3H, t, J = 7.1 Hz, CH3), 2.39 (1H, s, CH3), 2.43 (1H, s,
CH3), 3.73 (1H, s, CH3), 3.83 (1H, s, OCH3), 4.04 (2H, q, J = 7.1 Hz, CH2), 4.11 (2H,
q, J = 7 Hz, CH2), 5.31 (1H, s, CH), 6.18 (1H, s, NH), 6.54 (2H, d, J = 6.7 Hz, ArH),
6.71 (2H, d, J = 6.7 Hz, ArH), 6.84 (2H, d, J = 6.8 Hz, ArH), 7.34 (2H, d, J = 6.8,
13. Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100, 3205.