10.1002/chem.201703926
Chemistry - A European Journal
COMMUNICATION
CDCl3) δ = 26.75 (CH3), 126.64 (2 CH), 126.96 (2 CH), 127.57 (CH),
128.46 (CH), 128.94 (2 CH), 129.02 (2 CH), 131.60 (CH), 136.07 (C),
136.82 (C), 142.14 (C) 197.65 (C=O); MS (EI): m/z (%) = 222 (61, [M]+),
207 (100), 179 (26), 178 (78), 152 (19).
Organic Synthesis, John Wiley & Sons, New York, 2002; c) J. Tsuji,
Palladium Reagents and Catalysts – New Perspectives for the 21st
Century, Wiley, Chichester, 2004; d) J. J. Li, G. W. Gribble, Palladium
in Heterocyclic Chemistry, Second Edition, Elsevier, Oxford, 2007.
a) J. Dupont, M. Pfeffer, J. Spencer, Eur. J. Inorg. Chem. 2001, 8,
1917–1927; b) J. Dupont, C. S. Consorti, J. Spencer, Chem. Rev. 2005,
105, 2527–2571; c) J. Dupont, M. Pfeffer, Palladacycles: Synthesis,
Characterization and Applications, Wiley-VCH, Weinheim, 2008.
a) W. A. Herrmann, C. Brossmer, K. Öfele, C.-P. Reisinger, T.
Priermeier, M. Beller, H. Fischer, Angew. Chem. Int. Ed. 1995, 34,
1844–1848; b) W. A. Herrmann, C. Brossmer, C.-P. Reisinger, T. H.
Riermeier, K. Öfele, M. Beller, Chem. Eur. J. 1997, 3, 1357–1364.
a) A. C. Cope, R. W. Siekman, J. Am. Chem. Soc. 1965, 87, 3272–
3273; b) A. C. Cope, E. C. Friedrich, J. Am. Chem. Soc. 1968, 90, 909–
913; c) S. Trofimenko, Inorg. Chem. 1973, 12, 1215–1221; d) J. M.
Thompson, R. F. Heck, J. Org. Chem. 1975, 40, 2667–2674; e) A. D.
Ryabov, I. K. Sakodinskaya, A. K. Yatsimirsky, J. Chem. Soc. Dalton
Trans. 1985, 2629–2638; f) J. Milani, N. E. Pridmore, A. C. Whitwood, I.
J. S. Fairlamb, R. N. Perutz, Organometallics 2015, 34, 4376–4386.
a) M. Ohff, A. Ohff, D. Milstein, Chem. Commun. 1999, 357–358; b) A.
S. Gruber, D. Zim, G. Ebeling, A. L. Monteiro, J. Dupont, J. Org. Lett.
2000, 2, 1287–1290; c) M. Nowotny, U. Hanefeld, H. v. Koningsveld, T.
Maschmeyer, Chem. Commun. 2000, 1877–1878; d) T. Rosner, J. L.
Bars, A. Pfaltz, D. G. Blackmond, J. Am. Chem. Soc. 2001, 123, 1848–
1855; e) A. Schnyder, A. F. Indolese, M. Studer, H.-U. Blaser, Angew.
Chem. Int. Ed. 2002, 41, 3668–3671; f) R. B. Bedford, Chem. Commun.
2003, 1787–1796; g) V. V. Thakur, N. S. C. R. Kumar, A. Sudalai,
Tetrahedron Lett. 2004, 45, 2915–2918.
[2]
[3]
[4]
General procedure for the Suzuki–Miyaura reaction: The bromoarene
(1.25 mmol), phenylboronic acid (1.1 equiv), potassium carbonate (1.2
equiv), and the complex 4a or 4b were placed in a 10-mL round-bottom
flask. A mixture of NMP (2 mL) and water (2 mL) was added. The
reaction mixture was vigorously stirred at room temperature under air for
4 or 23 h. Subsequently, the reaction mixture was diluted with ethyl
acetate (30 mL), washed with 2 M HCl twice (10 mL), sat. aqueous
Na2CO3 (10 mL), and with brine (10 mL). The organic layer was
evaporated and the crude product was purified by automated column
chromatography on silica gel to afford the product.
4-Methoxy-1,1′-biphenyl: Complex 4a (3.3 mg, 0.0027 mmol, 0.21
mol%). Reaction time: 4 h. Column chromatography: isohexane/ethyl
acetate, 2–10 %, 30 min. Colorless solid (93 % yield). 1H NMR (500 MHz,
CDCl3): δ = 3.86 (s, 3 H), 6.99 (m, 2 H), 7.31 (m, 1 H), 7.42 (t, J = 7.7 Hz,
2 H), 7.55 (m, 4 H); 13C NMR (125 MHz, CDCl3) δ = 55.47 (CH3), 114.32
(2 CH), 126.79 (CH), 126.87 (2 CH), 128.28 (2 CH), 128.85 (2 CH),
133.90 (C), 140.95 (C), 159.26 (C); MS (EI): m/z (%) = 184 (100, [M]+),
169 (49), 141 (51), 115 (42).
[5]
4-Methyl-1,1′-biphenyl: Complex 4a (3.5 mg, 0.0029 mmol, 0.23 mol%).
Reaction time: 4 h. Column chromatography: isohexane/ethyl acetate, 2–
10 %, 30 min. Colorless solid (93 % yield). 1H NMR (500 MHz, CDCl3): δ
= 2.41 (s, 3 H), 7.26 (d, J = 7.9 Hz, 2 H), 7.33 (m, 1 H), 7.43 (t, J = 7.7 Hz,
2 H), 7.50 (d, J = 7.9 Hz, 2 H), 7.59 (m, 2 H); 13C NMR (125 MHz, CDCl3)
δ = 21.25 (CH3), 127.11 (2 CH), 127.14 (2 CH), 128.85 (3 CH), 129.61 (2
CH), 137.16 (C), 138.49 (C), 141.29 (C); MS (EI): m/z (%) = 168 (100,
[M]+), 167 (68).
[6]
[7]
a) D. Yuan, H. V. Huynh, Organometallics 2010, 29, 6020–6027; b) D.
Yuan, H. V. Huynh, Molecules 2012, 17, 2491–2517.
a) H.-J. Knölker, Chem Lett. 2009, 38, 8–13; b) C. Börger, O. Kataeva,
H.-J. Knölker, Org. Biomol. Chem. 2012, 10, 7269–7273; c) R. Hesse,
A. Jäger, A. W. Schmidt, H.-J. Knölker, Org. Biomol. Chem. 2014, 12,
3866–3876; d) R. Hesse, M. P. Krahl, A. Jäger, O. Kataeva, A. W.
Schmidt, H.-J. Knölker, Eur. J. Org. Chem. 2014, 4014–4028; e) K. K.
Julich-Gruner, O. Kataeva, A. W. Schmidt, H.-J. Knölker, Chem. Eur. J.
2014, 20, 8536–8540; f) R. Hesse, O. Kataeva, A. W. Schmidt, H.-J.
Knölker, Chem. Eur. J. 2014, 20, 9504–9509; g) C. Gassner, R. Hesse,
A. W. Schmidt, H.-J. Knölker, Org. Biomol. Chem. 2014, 12, 6490–
6499; h) C. Schuster, K. K. Julich-Gruner, H. Schnitzler, R. Hesse, A.
Jäger, A. W. Schmidt, H.-J. Knölker, J. Org. Chem. 2015, 80, 5666–
5673; i) C. Schuster, M. Rönnefahrt, K. K. Julich-Gruner, A. Jäger, A. W.
Schmidt, H.-J. Knölker, Synthesis 2016, 48,150–160; j) C. Brütting, R.
Hesse, A. Jäger, O. Kataeva, A. W. Schmidt, H.-J. Knölker, Chem. Eur.
J. 2016, 22, 16897–16911.
4-Nitro-1,1′-biphenyl: Complex 4a (3.7 mg, 0.0030 mmol, 0.25 mol%).
Reaction time: 4 h. Column chromatography: isohexane/ethyl acetate,
15–18 %, 20 min. Yellow solid (97 % yield). 1H NMR (500 MHz, CDCl3): δ
= 7.45 (m, 1 H), 7.51 (m, 2 H), 7.63 (m, 2 H), 7.74 (m, 2 H), 8.30 (m, 2
H); 13C NMR (125 MHz, CDCl3) δ = 124.24 (2 CH), 127.51 (2 CH),
127.93 (2 CH), 129.05 (CH), 129.29 (2 CH), 138.90 (C), 147.21 (C),
147.76 (C); MS (EI): m/z (%) = 199 (80, [M]+), 169 (31), 153 (27), 152
(100), 151 (29), 141 (31).
4-Acetyl-1,1′-biphenyl: Complex 4b (2.8 μg, 0.0022 μmol, 0.00018
mol%). Reaction time: 23 h. Column chromatography: isohexane/ethyl
acetate, 1–17 %, 30 min. Colorless solid (97 % yield). 1H NMR (500 MHz,
CDCl3): δ = 2.65 (s, 3 H), 7.41 (tt, J = 7.4 Hz, 1.3 Hz, 1 H), 7.48 (t, J = 7.4
Hz, 2 H), 7.63 (m, 2 H), 7.69 (m, 2 H), 8.04 (m, 2 H); 13C NMR (125 MHz,
CDCl3) δ = 26.83 (CH3), 127.38 (2 CH), 127.43 (2 CH), 128.38 (CH),
129.06 (2 CH), 129.10 (2 CH), 135.99 (C), 140.02 (C), 145.94 (C),
197.93 (C=O); MS (EI): m/z (%) = 196 (44, [M]+), 181 (100), 153 (38),
152 (62).
[8]
[9]
a) T. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva, I.
Bauer, H.-J. Knölker, Chem. Eur. J. 2012, 18, 770–776; b) T. Gensch,
N. Richter, G. Theumer, O. Kataeva, H.-J. Knölker, Chem. Eur. J. 2016,
22, 11186–11190; c) T. Gensch, R. Thoran, N. Richter, H.-J. Knölker,
Chem. Eur. J. 2017, 23, doi: 10.1002/chem.201702773.
E. Buck, Z. J. Song, D. Tschaen, P. G. Dormer, R. P. Volante, P. J.
Reider, Org. Lett. 2002, 4, 1623–1626.
[10] D. S. Surry, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 10354–
10355.
[11] a) A. Bondi, J. Phys. Chem. 1964, 68, 441–451; b) T. W. Hambley,
Inorg. Chem. 1998, 37, 3767–3774.
Acknowledgements
[12] C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V.
Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062–5085; Angew. Chem.
2012, 124, 5150–5174.
We would like to thank Jason Melidonie for experimental support.
[13] a) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009–
3066; b) R. F. Heck, Synlett 2006, 2855–2860.
Keywords: palladacycles • X-ray diffraction • catalysis •
Mizoroki–Heck coupling • Suzuki–Miyaura coupling
[14] a) V. V. Dunina, O. A. Zalevskaja, V. M. Potapov, Russ. Chem. Rev.
1988, 57, 250–269; b) A. D. Ryabov, Chem. Rev. 1990, 90, 403–424.
[15] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483; b) S.
Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633–9695; c) A.
[1]
a) B. Cornils, W. A. Herrmann, Applied Homogenous Catalysis with
Organometallic Compounds, Wiley-VCH, Weinheim, 1996; b) E.
Negishi, A. de Meijere, Handbook of Organopalladium Chemistry for
This article is protected by copyright. All rights reserved.