1892
S. Hirai et al. / Tetrahedron Letters 54 (2013) 1888–1892
Ravikumar, V.; Pujari, S. A. J. Chem. Sci. 2008, 120, 205–216; (f) Enomoto, T.;
OEE
Morimoto, T.; Ueno, M.; Matsukubo, T.; Shimada, Y.; Tsutsumi, K.; Shirai, R.;
Kakiuchi, K. Tetrahedron 2008, 64, 4051–4059; (g) Julien, P.; Aicha, B.; Gaelle,
B.; Jean, S. Angew. Chem., Int. Ed. 2011, 50, 3285–3289; (h) Mendoza, A.;
Ishihara, Y.; Baran, P. S. Nat. Chem. 2012, 4, 21–25.
Br
Br
OEE
I
28, n-BuLi
THF, –78 °C
+
then 27, –78 °C
10. For the recent reviews of organocatalysis, see (a) List, B. Acc. Chem. Res. 2004,
37, 548–557; (b) Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheng, P. H.-Y.;
Houk, K. N. Acc. Chem. Res. 2004, 37, 558–568; (c) Notz, W.; Tanaka, F.; Barbas,
C. F., III Acc. Chem. Res. 2004, 37, 580–591; (d) Kazmaier, U. Angew. Chem., Int.
Ed. 2005, 44, 2186–2188; (e) Ley, S. V. Asymmetric Synth. 2007, 201–206; (f)
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–
5569; (g) Kotsuki, H.; Ikishima, H.; Okuyama, A. Heterocycles 2008, 75, 493–
529; (h) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed.
2008, 47, 6138–6171; (i) Vilaivan, T.; Bhanthumnavin, W. Molecules 2010, 15,
917–958.
96%
CHO
BnO
27
BnO
OH
29
28
O
1) TBSOTf, DIPEA
CH2Cl2, 0 °C, 99%
1) MeMgI, THF
0 °C, 94 %
Br
2) p-TsOH, MeOH
rt, 84%
3) DMP, CH2Cl2, rt, 95%
2) DMP, CH2Cl2
rt, 95%
BnO
11. Zhong, G.; Tejero, T. Angew. Chem., Int. Ed. 2003, 42, 4247–4250.
12. Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003,
125, 10808–10809.
OTBS
30
O
13. Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44,
8293–8296.
14. (a) Guo, H.-M.; Cheng, L.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jang, Y.-Z. Chem.
Commun. 2006, 429–431; (b) Kim, S. G.; Park, T. H. Tetrahedron Lett. 2006, 47,
9067–9071; (c) Demoulin, N.; Lifchits, O.; List, B. Tetrahedron 2012, 68, 7568–
7574.
O
Br
Pd(PPh3)4 (30 mol %)
PhOK (3.0 equiv)
toluene, 100 °C, 4 h
95%
BnO
BnO
15. Poe, S. L.; Bogdan, A. R.; Mason, B. P.; Steinbacher, J. L.; Opalka, S. M.; McQuade,
D. T. J. Org. Chem. 2009, 74, 1574–1580.
OTBS
OTBS
31
2
16. (a) Reyes, E.; Vicario, J. L.; Badía, D.; Carrillo Org. Lett. 2006, 8, 6135–6138; (b)
Kumar, A.; Maurya, R. A. Tetrahedron 2007, 63, 1946–1952; (c) Ibrahem, I.; Zou,
W.; Casas, J.; Sundén, H.; Cordová, A. Tetrahedron 2006, 62, 357–364; (d)
Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141–1146; (e) Cobb,
A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem.
2005, 3, 84–96.
17. (a) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558–560; (b) Hartikka, A.;
Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831–1834; (c) Cobb, A. J. A.;
Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808–1809; (d)
Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed.
2004, 43, 1983–1986.
Scheme 8.
References and notes
1. (a) Holton, R. A.; Somoza, C.; Kim, H.-B.; Liang, F.; Biediger, R. J.; Boatman, P. D.;
Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang,
S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116,
1597–1598; (b) Holton, R. A.; Kim, H. B.; Somoza, C.; Liang, F.; Biediger, R. J.;
Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao,
C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem.
Soc. 1994, 116, 1599–1600.
18. Wang, W.; Lia, H.; Wang, J. Tetrahedron Lett. 2005, 46, 5077–5079.
19. Compound 4: mp = 104–105 °C (recrystallization from hexane); Rf = 0.63
(hexane/EtOAct = 4/1); IR (KBr) mmax 1724, 1458, 1094, 1049, 899, 739 cmꢂ1
;
1H NMR (400 MHz, CDCl3):
d 9.84 (s, 1H), 7.39–7.26 (m, 5H), 4.56 (d,
2. (a) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.;
Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J.
Nature 1994, 367, 630–634; (b) Nicolaou, K. C.; Nantermet, P. G.; Ueno, H.; Guy,
R. K.; Couladouros, E. A.; Sorensen, E. J. J. Am. Chem. Soc. 1995, 117, 624–633; (c)
Nicolaou, K. C.; Liu, J.-J.; Yang, Z.; Ueno, H.; Sorensen, E. J.; Claiborne, C. F.; Guy,
R. K.; Hwang, C.-K.; Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117,
634–644; (d) Nicolaou, K. C.; Yang, Z.; Liu, J.-J.; Nantermet, P. G.; Claiborne, C.
F.; Renaud, J.; Guy, R. K.; Shibayama, K. J. Am. Chem. Soc. 1995, 117, 645–652; (e)
Nicolaou, K. C.; Ueno, H.; Liu, J.-J.; Nantermet, P. G.; Yang, Z.; Renaud, J.;
Paulvannan, K.; Chadha, R. J. Am. Chem. Soc. 1995, 117, 653–659.
3. (a) Masters, J. J.; Link, J. T.; Snyder, L. B.; Young, W. B.; Danishefsky, S. J. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1723–1726; (b) Danishefsky, S. J.; Masters, J. J.;
Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.;
Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc.
1996, 118, 2843–2859.
4. (a) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.;
Gränicher, C.; Houze, J. B.; Jänichen, J.; Lee, D.; Marquess, D. G.; McGrane, P. L.;
Meng, W.; Mucciaro, T. P.; Mühlebach, M.; Natchus, M. G.; Paulsen, H.; Rawlins,
D. B.; Satkofsky, J.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E.; Tomooka, K. J. Am.
Chem. Soc. 1997, 119, 2755–2756; (b) Wender, P. A.; Badham, N. F.; Conway, S.
P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D. S.; Marquess,
D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.;
Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2757–2758.
5. (a) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Sakoh, H.; Tani, Y.; Hasegawa, M.;
Saitoh, K. Proc. Jpn. Acad., Ser. B 1997, 73, 95–100; (b) Mukaiyama, T.; Shiina, I.;
Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.;
Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem. Eur. J. 1999, 5, 121–161.
6. (a) Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama,
H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980–12981; (b) Kusama, H.;
Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihira, K.;
Kuwajima, I. J. Am. Chem. Soc. 2000, 122, 3811–3820.
J = 11.7 Hz, 1H), 4.41 (d, J = 11.7 Hz, 1H), 2.35–2.21 (m, 2H), 2.17–2.09 (m,
1H), 2.04–1.98 (m, 1H), 1.91 (s, 3H), 1.38 (s, 3H), 1.10 (s, 3H); 13C NMR
(100 MHz, CDCl3): d 204.7, 138.2, 137.1, 128.3, 127.5, 126.8, 114.2, 83.4, 66.2,
45.6, 30.9, 29.4, 27.5, 26.6, 20.8; HRMS (FAB) [M+H]+ calcd for C17H22O2I,
385.0664, found 385.0676; ½a D32
ꢃ
+57.7 (c 1.03, CHCl3, >99% ee). The plus sign in
specific rotation of 4, which was derived from 10, was the same as that of the
previously prepared
4
via baker’s yeast reduction,8b indicating that the
absolute configuration of 10 is as shown in Table 1.
20. Young, W. B.; Masters, J. J.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5228–
5234.
21. Nakamura, T.; Waizumi, N.; Horiguchi, Y.; Kuwajima, I. M. Tetrahedron Lett.
1994, 35, 7813–7816.
22. Frost, C.; Linnane, P.; Magnus, P.; Spyvee, M. Tetrahedron Lett. 1996, 37, 9139–
9142.
23. Rosemund reduction of 21 afforded 23. However, the yield (71%) was inferior
to the two-step sequence in Scheme 6 (86%, two steps) because reduction of
the C–Br bond in 21 took place during the palladium-catalyzed reduction.
24. (E)-TBDPS enol ether of 6 was also prepared and subjected to the SAD, but the
reaction proceeded very slowly at room temperature and only 17% of 25a with
28% ee was formed after 12 h.
25. Compound 27: mp = 92–93 °C (recrystallization from hexane, 39% from 27 (91%
ee)); IR (neat) mmax 2196, 1980, 1728, 1458, 1365, 1092, 1028, 904, 735, 696,
580 cmꢂ1;1H NMR (400 MHz, CDCl3): d 9.87 (s, 1H), 7.41–7.20 (m, 5H), 4.56 (d,
J = 11.7 Hz 1H), 4.40 (d, J = 11.7 Hz 1H), 2.29–2.17 (m, 2H), 2.17–2.07 (m, 1H),
2.07–1.95 (m, 1H), 1.83 (s, 3H), 1.42 (s, 3H), 1.14 (s, 3H); 13C NMR (100 MHz,
CDCl3): d 204.8, 138.5, 129.0, 128.5, 127.7, 127.0, 84.5, 66.3, 45.2, 29.1, 25.2,
24.5, 20.7; HRMS (ESI) [M+Na]+ calcd for C17H21O2BrNa, 359.0623, found,
359.0622; ½a 1D6
ꢃ
+90.0 (c 1.72, CHCl3, >99% ee). Compounds 4 (>99% ee)8b and 27
(91% ee) were converted into compound 32 as shown below. Both compounds
were found to have the same plus sign in specific rotation, confirming the
absolute configuration of 27 as shown here.
7. Formal total synthesis of taxol: Doi, T.; Fuse, S.; Miyamoto, S.; Nakai, K.; Sasuga,
D.; Takahashi, T. Chem. Asian J. 2006, 1, 370–383.
1) NaBH4
2) nBuLi
3) DMP
Br
1) NaBH4
2) nBuLi
3) DMP
I
H
8. (a) Utsugi, M.; Kamada, Y.; Miyamoto, H.; Nakada, M. Tetrahedron Lett. 2008, 49,
4754–4757; (b) Utsugi, M.; Kamada, Y.; Miyamoto, H.; Nakada, M. Tetrahedron
Lett. 2007, 48, 6868–6872; (c) Utsugi, M.; Miyano, M.; Nakada, M. Org. Lett.
2006, 8, 2973–2976; (d) Iwamoto, M.; Miyano, M.; Utsugi, M.; Kawada, H.;
Nakada, M. Tetrahedron Lett. 2004, 45, 8647–8651; (e) Kawada, H.; Iwamoto,
M.; Utsugi, M.; Miyano, M.; Nakada, M. Org. Lett. 2004, 6, 4491–4494; (f)
Nakada, M.; Kojima, E.; Iwata, Y. Tetrahedron Lett. 1998, 39, 313–316.
9. (a) Uttaro, J.-P.; Audran, G.; Monti, H. J. Org. Chem. 2005, 70, 3484–3489; (b)
Gao, Z.-H.; Liu, B.; Li, W.-D. Z. Tetrahedron 2005, 61, 10734–10737; (c)
Chouraqui, G.; Petit, M.; Phansavath, P.; Aubert, C.; Malacria, M. Eur. J. Org.
Chem. 2006, 1413–1421; (d) Kreilein, M. M.; Hofferberth, J. E.; Hart, A. C.;
Paquette, L. A. J. Org. Chem. 2006, 71, 7329–7336; (e) Kaliappan, K. P.;
CHO
8%
(3 steps)
CHO
CHO
46%
(3 steps)
BnO
BnO
BnO
32
4 (>99% ee)8b
27 (91% ee)
[α]D22 +38.0 (c 0.10, CHCl3)
[α]D22 +35.3 (c 0.17, CHCl3)
from 4:
from 27: