Journal of the American Chemical Society
Communication
caging approach as a method to control PDZ domain−ligand
binding can be extended to more complex systems.
ACKNOWLEDGMENTS
■
This research was supported by NSF CHE-0414243 (to B.I.), the
Cell Migration Consortium (GM064346), the Marie Curie
Postdoctoral Fellowship (PICK-CPP to M.S.), and the ANR
(ChemTraffic to M.S. and D.C.). We thank the staff at NSLS
beamline X6A for access via the General User program.
Finally, since the most important application of the tools
presented here is to provide enhanced temporal control over the
intracellular interactions mediated by proteins containing PDZ
domains, we sought to estimate the stability of the ester bond
connecting the ligand to the caging group in complex
environments. Stability studies carried out using brain lysate
preparations to approximate the conditions to which the caged
probes would be exposed in cellular experiments provided clear
evidence that the caged ligands, which are esters of peptides
containing C-terminal valines, present a significantly higher
resistance toward cellular esterases than do simple unhindered
acetate esters (Figure S8). Specifically, after incubation for 20
min at 37 °C, the background hydrolysis of the caged ligand
approached only ∼10%. In the context of our previous successful
studies with noncaged ligands in cultured neurons,12 this time
window is sufficient to allow for efficient cellular internalization
followed by uncaging experiments with minimal background
hydrolysis. Moreover, the nature of the side chain of the C-
terminal residue in most PDZ domain binding motifs (in this
case valine) contributes significantly to the lower esterase
susceptibility, thereby allowing for the generalization of our
caging strategy. Finally, if additional resistance to cellular
hydrolases is needed, the stability of the caged ligand could be
further improved by a straightforward modification of the NPE
caging group, as shown previously.20
In summary, we have described a general and versatile method
to control the binding of a PDZ domain ligand to its cognate
PDZ domains using photoactivation. The introduction of a
caging group on the critical C-terminal carboxylate of a ligand-
binding motif strongly impairs the interactions with targeted
PDZ domains until a photorelease event is triggered. In view of
the prevalence of C-terminal binding motifs for PDLs over less
common internal sequences,21 the approach should be generally
applicable to most PDZ domain-mediated interactions. In a
complementary approach, photoswitchable cyclic peptides for
noncanonical internal binding motifs were recently reported.22
Importantly, the caging method can be applied to more
sophisticated bivalent ligands, and we have shown that a single
caging group is sufficient to confer upon these ligands tailored
binding properties that can be revealed by a single uncaging
event. Such caged ligands will constitute unique tools for
investigating systems where sharp spatial and temporal control of
the release of the active ligand is critical, such as studies of the
local effect of glutamate receptor trafficking on neighboring
synapses and of the receptor life cycle with respect to diffusion or
endo- or exocytosis. The new tools presented here provide high
spatiotemporal resolution and can be used to study transient and
localized biological events involving PDMIs.
REFERENCES
■
(1) Adams, S. R.; Tsien, R. Y. Annu. Rev. Physiol. 1993, 55, 755. Brieke,
C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Angew. Chem.,
Int. Ed. 2012, 51, 8446.
(2) Ellis-Davies, G. C. Nat. Methods 2007, 4, 619.
(3) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45, 4900.
(4) Goguen, B. N.; Hoffman, B. D.; Sellers, J. R.; Schwartz, M. A.;
Imperiali, B. Angew. Chem., Int. Ed. 2011, 50, 5667. Lee, H. M.; Larson,
D. R.; Lawrence, D. S. ACS Chem. Biol. 2009, 4, 409. Riggsbee, C. W.;
Deiters, A. Trends Biotechnol. 2010, 28, 468. Banghart, M. R.; Sabatini, B.
L. Neuron 2012, 73, 249.
(5) Nguyen, A.; Rothman, D. M.; Stehn, J.; Imperiali, B.; Yaffe, M. B.
Nat. Biotechnol. 2004, 22, 993.
(6) Humphrey, D.; Rajfur, Z.; Vazquez, M. E.; Scheswohl, D.; Schaller,
M. D.; Jacobson, K.; Imperiali, B. J. Biol. Chem. 2005, 280, 22091. Kuner,
T.; Li, Y.; Gee, K. R.; Bonewald, L. F.; Augustine, G. J. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 347.
(7) Bhattacharyya, R. P.; Remenyi, A.; Yeh, B. J.; Lim, W. A. Annu. Rev.
Biochem. 2006, 75, 681. Luck, K.; Charbonnier, S.; Trave, G. FEBS Lett.
2012, 586, 2648.
(8) Hung, A. Y.; Sheng, M. J. Biol. Chem. 2002, 277, 5699.
(9) Kim, E. J.; Sheng, M. Nat. Rev. Neurosci. 2004, 5, 771.
(10) Nourry, C.; Grant, S. G. N.; Borg, J.-P. Sci. STKE 2003, No. 179,
re7. Feng, W.; Zhang, M. J. Nat. Rev. Neurosci. 2009, 10, 87.
(11) Aarts, M.; Liu, Y.; Liu, L.; Besshoh, S.; Arundine, M.; Gurd, J. W.;
Wang, Y. T.; Salter, M. W.; Tymianski, M. Science 2002, 298, 846.
Gerges, N. Z.; Backos, D. S.; Rupasinghe, C. N.; Spaller, M. R.; Esteban,
J. A. EMBO J. 2006, 25, 1623. Bertaso, F.; Zhang, C.; Scheschonka, A.;
de Bock, F.; Fontanaud, P.; Marin, P.; Huganir, R. L.; Betz, H.; Bockaert,
J.; Fagni, L.; Lerner-Natoli, M. Nat. Neurosci. 2008, 11, 940.
(12) (a) Sainlos, M.; Tigaret, C.; Poujol, C.; Olivier, N. B.; Bard, L.;
Breillat, C.; Thiolon, K.; Choquet, D.; Imperiali, B. Nat. Chem. Biol.
2011, 7, 81. (b) Bard, L.; Sainlos, M.; Bouchet, D.; Cousins, S.;
Mikasova, L.; Breillat, C.; Stephenson, F. A.; Imperiali, B.; Choquet, D.;
Groc, L. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 19561.
(13) Loving, G. S.; Sainlos, M.; Imperiali, B. Trends Biotechnol. 2010,
28, 73.
(14) Sainlos, M.; Iskenderian, W. S.; Imperiali, B. J. Am. Chem. Soc.
2009, 131, 6680.
(15) Cabral, J. H. M.; Petosa, C.; Sutcliffe, M. J.; Raza, S.; Byron, O.;
Poy, F.; Marfatia, S. M.; Chishti, A. H.; Liddington, R. C. Nature 1996,
382, 649. Doyle, D. A.; Lee, A.; Lewis, J.; Kim, E.; Sheng, M.;
MacKinnon, R. Cell 1996, 85, 1067.
(16) Songyang, Z.; Fanning, A. S.; Fu, C.; Xu, J.; Marfatia, S. M.;
Chishti, A. H.; Crompton, A.; Chan, A. C.; Anderson, J. M.; Cantley, L.
C. Science 1997, 275, 73.
(17) (a) Walker, J. W.; Reid, G. P.; McCray, J. A.; Trentham, D. R. J.
Am. Chem. Soc. 1988, 110, 7170. (b) Wilcox, M.; Viola, R. W.; Johnson,
K. W.; Billington, A. P.; Carpenter, B. K.; McCray, J. A.; Guzikowski, A.
P.; Hess, G. P. J. Org. Chem. 1990, 55, 1585.
ASSOCIATED CONTENT
■
S
* Supporting Information
(18) Vazquez, M. E.; Rothman, D. M.; Imperiali, B. Org. Biomol. Chem.
2004, 2, 1965.
(19) Sainlos, M.; Imperiali, B. Nat. Protoc. 2007, 2, 3219. Sainlos, M.;
Imperiali, B. Nat. Protoc. 2007, 2, 3201.
Supporting figures and experimental methods. This material is
(20) Kusaka, N.; Maisch, J.; Nick, P.; Hayashi, K.-i.; Nozaki, H.
ChemBioChem 2009, 10, 2195.
(21) Ivarsson, Y. FEBS Lett. 2012, 586, 2638.
(22) Hoppmann, C.; Schmieder, P.; Domaing, P.; Vogelreiter, G.;
Eichhorst, J.; Wiesner, B.; Morano, I.; Ruck-Braun, K.; Beyermann, M.
Angew. Chem., Int. Ed. 2011, 50, 7699.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
4583
dx.doi.org/10.1021/ja309870q | J. Am. Chem. Soc. 2013, 135, 4580−4583