Dalton Transactions
Page 4 of 7
DOI: 10.1039/C3DT52052H
130.8 (CHPh), 129.5 (CHPh), 128.4 (CHPh), 126.1 (CHPh), 122.9
(s, 3 H, C5Me4), 1.73 (s, 3 H, C5Me4), 1.04 (s, 3 H, C5Me4).
(CHImid), 119.7 (CHImid), 105.1 (C5Me4), 104.4 (C5Me4), 102.8 60 13C{1H}ꢀNMR (C6D6): 176.1 (NiꢀCCarbene), 137.7 (CiPh), 129.0
(C5Me4), 101.2 (C5Me4), 89.1 (C5Me4), 66.6 (CHlinker), 60.1 (CH2,
(CHPh), 128.9 (CHPh), 128.3 (CHPh), 122.4 (CHImid), 120.2
(CHImid), 104.8 (C5Me4), 104.5 (C5Me4), 103.1 (C5Me4), 100.0
(C5Me4), 89.0 (C5Me4), 66.8 (CHlinker), 40.9 (NMe), 30.3
(CH2linker), 12.4 (C5Me4), 10.8 (C5Me4), 10.6 (C5Me4), 9.7
i
i
iBu), 30.2 (CH2linker), 30.1 (CH, Bu), 20.1 (Me, Bu), 20.0 (Me,
iBu), 12.4 (C5Me4), 10.7 (C5Me4), 10.6 (C5Me4), 10.0 (C5Me4).
Anal. Calc for C24H31N2NiI (533.11): C, 54.07; H, 5.86; N, 5.25.
5
Found: C, 53.80; H, 5.52; N, 4.86. HRMS (ESIꢀTOF): m/z [MꢀI]+ 65 (C5Me4). Anal. Calc for C21H25N2NiIꢁC7H8 (582.10): C, 57.67;
calcd for C24H31N2Ni, 405.1841; found: 405.1841 [MꢀI]+.
H, 5.70; N, 4.80. Found: C, 57.60; H, 5.52; N, 5.15.
10
Catalytic dehydrogenative coupling of thiols with Et3SiH.
Synthesis of (Cp*-NHCnBu)NiI, 3b-I. A procedure similar to
Toluene (0.5 mL), (Cp*ꢀNHCR)NiX (1 mol%), thiol (1 mmol),
that used for the preparation of 3a-I was applied by using 70 Et3SiH (4 mmol), and Ph2CH2 (0.5 mmol) used as internal
proligand 2b (0.30 g, 0.62 mmol), nꢀBuLi (0.86 mL, 1.36
standard, were charged in a vial. The vial was tight closed
under nitrogen, and the solution was heated at 80ºC for 18 h.
All volatiles were then removed under vacuum, and the
residue was dissolved in CDCl3. The amount of the
mmol), and NiCl2(DME) (0.14 g, 0.62 mmol). Yield: 0.21 g
1
15 (78%). HꢀNMR (C6D6): 7.17ꢀ6.94 (m, 5 H, CHPh), 6.05 (s, 1
H, CHImid), 5.85 (s, 1 H, CHImid), 5.19 (m, 1 H, CHlinker), 5.08
(m, 1 H, Bu), 4.04 (m, 1 H, Bu), 2.02 (s, 3 H, C5Me4), 2.01 75 corresponding triethylsilylthioether formed was determined by
(m, 2 H, CH2linker), 1.97 (s, 3 H, C5Me4), 1.90 (m, 2H, Bu),
1.70 (s, 3 H, C5Me4), 1.08 (s, 3 H, C5Me4), 1.29 (q, 2 H, Bu),
20 0.97 (m, 3 H, Bu). 13C{1H}ꢀNMR (C6D6): 174.3 (NiꢀCCarbene),
137.9 (CiPh), 129.8 (CHPh), 128.35 (CHPh), 127.2 (CHPh),
121.9 (CHImid), 120.2 (CHImid), 104.9 (C5Me4), 104.4 (C5Me4),
102.7 (C5Me4), 100.8 (C5Me4), 89.2 (C5Me4), 66.7 (CHlinker),
52.7 (CH2, Bu), 33.5 (CH2linker), 30.2 (CH, Bu), 19.7 (Me, Bu),
25 12.4 (Me, Bu), 11.9 (C5Me4), 11.3 (C5Me4), 11.1 (C5Me4),
10.7 (C5Me4). Anal. Calc for C24H31N2NiIꢁC7H8 (625.25): C,
59.55; H, 6.29; N, 4.48. Found: C, 59.30; H, 6.27; N, 4.88.
HRMS (ESIꢀTOF): m/z [MꢀI]+ calcd for C24H31N2Ni,
405.1841; found: 405.1836 [MꢀI]+.
1H NMR by the relative intensity of signals of the product and
the Ph2CH2 used as internal standard. The
triethylsilylthioether produced was identified by comparison
of the NMR spectra with reported data.21e,24
80 Acknowledgements
We gratefully acknowledge financial support from FCT of
Portugal, POCI 2010 and FEDER through projects
PTDC/QUIꢀQUI/110349/2009
QUI/099389/2008. We
and
thank
PTDC/QUIꢀ
FC&T for
85 REDE/1517/RMN/2005 and REDE/1504/REM/2005. We wish
to acknowledge M.C. Almeida and Dr. A. Coelho for
providing data from the Elemental Analyses and Mass
Spectrometry Services at ITQB.
30
Synthesis of (Cp*-NHCEt)NiI, 3c-I. A procedure similar to
that used for the preparation of 3a-I was applied by using
proligand 2c (0.20 g, 0.44 mmol), nꢀBuLi (0.63 mL, 0.98
mmol), and NiCl2(DME) (0.10 g, 0.44 mmol). Yield: 0.15 g
1
90 Notes and references
35 (72%). HꢀNMR (C6D6): 7.08ꢀ6.88 (m, 5 H, CHPh), 6.97 (s, 1
3
H, CHImid), 5.82 (s, 1 H, CHImid), 5.22 (dd, 1 H, J = 10.6 Hz,
Instituto de Tecnología Química e Biológica da Universidade Nova de
Lisboa. Av. da República, EAN,2780-417Oeiras. Portugal.; E-mail:
3J = 3.5 Hz, CHlinker), 4.85 (sex, 1 H,CH2Et), 4.17 (sex, 1
H,CH2Et), 2.10 (m, 2 H, CH2linker), 2.07 (s, 3 H, C5Me4), 1.99
(s, 3 H, C5Me4), 1.73 (s, 3 H, C5Me4), 1.30 (t, 3 H, MeEt), 1.05
40 (s, 3 H, C5Me4). 13C{1H}ꢀNMR (C6D6): 174.5 (NiꢀCCarbene),
137.7 (CiPh), 129.8 (CHPh), 129.1 (CHPh), 128.9 (CHPh), 128.5
(CHPh), 121.0 (CHImid), 120.4 (CHImid), 105.0 (C5Me4), 104.5
(C5Me4), 102.8 (C5Me4), 100.2 (C5Me4), 89.3 (C5Me4), 66.3
(CHlinker), 47.8 (CH2, Et), 30.2 (CH2linker), 16.4 (Me, Et), 12.4
45 (C5Me4), 11.1 (C5Me4), 10.7 (C5Me4), 9.9 (C5Me4). Anal. Calc
for C22H27N2NiI (505.05): C, 52.31; H, 5.39; N, 5.55. Found:
C, 51.97; H, 5.08; N, 5.16.
95 † Electronic Supplementary Information (ESI) available: NMR and
HRMS spectra of coumpounds.
1. (a) S. DíezꢀGonzález, N. Marion and S. P. Nolan, Chem. Rev. 2009,
100
109, 3612ꢀ3676; (b) T. Dröge and F. Glorius, Angew. Chem. Int. Ed.
2010, 49, 6940ꢀ6952; (c) H. Jacobsen, A. Correa, A. Poater, C.
Costabile and L. Cavallo, Coord. Chem. Rev. 2009, 253, 687ꢀ703; (d)
F. Glorius, N-Heterocyclic Carbenes in Transition-Metal Catalysis,
in Topics in Organometallic Chemistry; Springer: Berlin, Germany
2007, Vol. 21.
Synthesis of (Cp*-NHCMe)NiI, 3d-I. Complex 3d-Cl (0.15 g,
50 0.37 mmol) was treated with KI (0.31 g, 1.88 mmol) and the
mixture refluxed in THF (15 mL) mixture for 16 h. After
cooling, all volatiles were removed in vacuum and the
remaining solid was extracted in a mixture of toluene/hexane
(10 mL/5 mL), yielding 3d-I as a red solid. Yield: 0.12 g
55 (65%).1HꢀNMR (C6D6): 7.09ꢀ6.87 (m, 5 H, CHPh), 5.91 (d, 1
H, 3J = 1.8 Hz, CHImid), 5.79 (d, 1 H, 3J = 1.8 Hz, CHImid),
105
2. (a) F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47,
3122ꢀ3172. (b) M. C. Jahnke and F. E. Hahn, Top Organomet. Chem.
2010, 30, 95. (c) R. H. Crabtree, Coord. Chem. Rev. 2007, 251, 595.
3. (a) O. Kühl, Functionalised N-heterocyclic carbene complexes,
Wiley, UK, 2010; (b) A. T. Normand and K. J. Cavell, Eur. J.
Inorg. Chem., 2008, 2781ꢀ2800; (c) I. Ozdemir, S. Demir, B.
Cetinkaya, L. Toupet, R. Castarlenas, C. Fischmeister and P. H.
Dixneuf, Eur. J. Inorg. Chem., 2007, 2862ꢀ2869; (d) J. A. Mata,
110
3
3
5.22 (dd, 1 H, J = 10.8 Hz, J = 3.3 Hz, CHlinker), 3.80 (s, 3 H,
NMe), 2.07ꢀ2.05 (m, 2 H, CH2linker), 2.06 (s, 3 H, C5Me4), 2.00
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 5