ORGANIC
LETTERS
2013
Vol. 15, No. 7
1606–1609
Bioinspired Construction of a
Spirocyclohexadienone Moiety via
Sodium Nitrite Catalyzed Aerobic
Intramolecular Oxidative Phenol Coupling
Bo Su,† Meng Deng,† and Qingmin Wang*
State Key Laboratory of Elemento-Organic Chemistry, Research Institute of
Elemento-Organic Chemistry, Nankai University, Tianjin 300071,
People’s Republic of China
wang98h@263.net; wangqm@nankai.edu.cn
Received February 8, 2013
ABSTRACT
An efficient and green intramolecular oxidative phenol coupling for the direct construction of spirocyclohexadienones has been developed, which
uses environment-friendly sodium nitrite as the catalyst and oxygen in the air as the terminal oxidant. Hydroxy-containing substituted
phenanthrenes and dibenzoazepines could be easily obtained from the dienoneꢀphenol rearrangement.
Intramolecular oxidative phenol coupling has long been
recognized as the key step in the biosynthesis of phenolic
alkaloids and other natural products (Scheme 1),1 among
which amaryllicaceae,2 morphine and aporphine,3 and
phenanthroindolizidine alkaloids4 were widely examined.
The biogenesis of these natural products has inspired a
number of elegant total syntheses5 and led to extensive
exploration of oxidizing reagents, mainly focusing on heavy
metal reagents such as Tl(III),6 Fe(III),7 Pb(IV),8 and V(V)
salts.9 In the past two decades, a nonmetal oxidizing reagent,
a hypervalent iodine(III) reagent, has also been widely
explored and applied in the oxidative coupling reactions.10
However, large excess amounts of usage (at least stoichio-
metric equivalent), high toxicity, severe conditions, and/or
low yield also largely limited their applications, especially
(6) (a) Schwartz, M. A.; Rose, B. F.; Vishnuvajjala, B. J. Am. Chem.
Soc. 1973, 95, 612–613. (b) McKillop, A.; Turrell, A. G.; Taylor, E. C.
J. Org. Chem. 1977, 42, 764–765. (c) Taylor, E. C.; Andrade, J. G.; Rall,
G. J. H.; McKillop, A. J. Am. Chem. Soc. 1980, 102, 6513–6519.
(7) (a) Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki,
T. J. Am. Chem. Soc. 2010, 132, 13633–13635. (b) Egami, H.; Katsuki, T.
J. Am. Chem. Soc. 2009, 132, 6082–6083. (c) Wang, K. L.; Lu, M. Y.; Yu,
A.; Zhu, X. Q.; Wang, Q. M. J. Org. Chem. 2009, 74, 935–938.
(8) Feldman, K. S.; Ensel, S. M. J. Am. Chem. Soc. 1994, 116, 3357–
3366.
† These authors contributed equally.
(1) (a) Magdziak, D.; Meek, S. J.; Pettus, T. R. R. Chem. Rev. 2004,
104, 1383–1430. (b) Swenton, J. S. In The Chemistry of Quinonoid
Compounds, Vol. 2, Part 2; Patai, S., Rappoport, Z., Eds.; Wiley: New
York, 1988; p 899. (c) Humphries, S. G. In Biogenesis of Natural
Products; Bernfeld, P., Ed.; McMillan: New York, 1963; p 617.
(2) (a) Bhandarkar, J. G.; Kirby, G. W. J. Chem. Soc. 1970, 1224–
1227. (b) Eichhorn, J.; Takada, T.; Kita, Y.; Zenk, M. H. Phytochem-
istry 1998, 49, 1037–1047.
(3) (a) Kutchan, T. M. In The Alkaloids: Chemistry and Biology;
Cordell, G. A., Ed.; San Diego, 1997; Vol. 50, p 257. (b) Eichhorn, J.;
Takada, T.; Kita, Y.; Zenk, M. H. Phytochemistry 1998, 49, 1037.
(4) (a) Mulchandani, N. B.; Iyer, S. S.; Badheka, L. P. Phytochem-
istry 1969, 8, 1931–1935. (b) Mulchandani, N. B.; Iyer, S. S.; Badheka,
L. P. Phytochemistry 1971, 10, 1047–1050.
(9) (a) Schwartz, M. A.; Holton, R. A.; Scott, S. W. J. Am. Chem. Soc.
1969, 91, 2800–2800. (b) Schwartz, M. A.; Holton, R. A. J. Am. Chem.
Soc. 1970, 92, 1090–1092.
(10) (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–
2584. (b) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–1178.
(c) Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.;
Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684–3691. (d) Kita,
Y.; Takada, T.; Gyoten, M.; Tohma, H.; Zenk, M. H.; Eichhorn, J.
J. Org. Chem. 1996, 61, 5857–5864. (e) Takada, T.; Arisawa, M.;
Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. J. Org. Chem. 1998,
63, 7698–7706.
(5) (a) Node, M.; Kodama, S.; Hamashima, Y.; Baba, T.; Hamamichi,
N.; Nishide, K. Angew. Chem., Int. Ed. 2001, 40, 3060–3062. (b) Kodama,
S.; Hamashima, Y.; Nishide, K.; Node, M. Angew. Chem., Int. Ed. 2004, 43,
2659–2661.
r
10.1021/ol400388j
Published on Web 03/11/2013
2013 American Chemical Society