S. Ahmed et al. / Tetrahedron Letters 54 (2013) 1669–1672
1671
7. (a) Lions, F.; Perkin, W. H., Jr.; Robinson, R. J. Chem. Soc, Trans. 1925, 127, 1158;
(b) Oka, Y.; Omura, K.; Miyake, A.; Itoh, K.; Tomimoto, M.; Tada, N.; Yurugi, S.
Chem. Pharm. Bull. 1975, 23, 2239; (c) Eichler, E.; Rooney, C. S.; Williams, H. W.
R. J. Heterocycl. Chem. 1976, 13, 41; (d) Lynch, B. M.; Khan, M. A.; Teo, H. C.;
Pedrotti, F. Can. J. Chem. 1988, 66, 420; (e) Yamaguchi, Y.; Katsuyama, I.;
Funabiki, K.; Matsui, M.; Shibata, K. J. Heterocycl. Chem. 1998, 35, 805; (f)
Plaskon, A. S.; Ryabukhin, S. V.; Volochnyuk, D. M.; Gavrilenko, K. S.; Shivanyuk,
A. N.; Tolmachev, A. V. J. Org. Chem. 2008, 73, 6010.
CF3
CF3
1
2
Cl
N
1
Cl
1
Cl
Cl
2
6
Scheme 4. Different regioselectivity observed for substrates 1 and 6.
8. Harschneck, T.; Kirsch, S. F. J. Org. Chem. 2004, 69, 7171.
9. Fan´ anas, F. J.; Arto, T.; Mendoza, A.; Rodriguez, F. Org. Lett. 2011, 13, 4184.
10. (a) Chelucci, G.; Falorni, M.; Giacomelli, G. Synthesis 1990, 1121; (b) Chopade, P.
R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307; (c) Ohashi, M.; Takeda, I.; Ikawa,
M.; Ogosji, S. J. Am. Chem. Soc. 2011, 133, 18018; (d) Nakamura, I.; Yamamoto,
Y. Chem. Rev. 2004, 104, 2127; (e) Emmrich, T.; Reinke, H.; Langer, P. Synthesis
2006, 2551.
11. (a) Ehlers, P.; Reinmann, S.; Erfle, S.; Villinger, A.; Langer, P. Synlett 2010, 1528;
(b) Ehlers, P.; Neubauer, A.; Lochbrunner, S.; Villinger, A.; Langer, P. Org. Lett.
2011, 13, 1618.
12. (a) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L.
Science 2010, 328, 1679–1681; (b) Jiang, X.; Chu, L.; Qing, F.-L. J. Org. Chem.
2012, 77, 1251; (c) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc.
2008, 130, 8600; (d) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Organometallics
2008, 27, 6233.
13. (a) Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D.
G.; Baran, P. S. PNAS 2011, 108, 14411; (b) Kino, T.; Nagase, Y.; Ohtsuka, Y.;
Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010,
131, 98.
case of pyridine 1, the electronic effect overrides the steric effect,
while the opposite is true for benzene derivative 6. The reason
for this difference remains unclear at present. The reason might
be associated to the fact that the presence of the ring nitrogen en-
hances both the electron deficiency of the arene as well as offering
a potential complexation site for the catalyst.
In conclusion, we have reported Suzuki–Miyaura reactions of
2,6-dichloro-3-(trifluoromethyl)pyridine which provide a conve-
nient approach to various arylated pyridines. The regioselectivity
in favor of position 2 is based on electronic grounds and is opposite
to the regioselectivity observed for 2,4-dichloro-1-trifluoromethyl-
benzene.
14. (a) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224; (b) Ye, Y.; Sanford,
M. S. J. Am. Chem. Soc. 2012, 134, 9034.
15. Mejia, E.; Togni, A. ACS Catal. 2012, 2, 521.
Acknowledgments
16. (a) Jiang, B.; Xiong, X.-N.; Yang, C.-G. Bioorg. Med. Chem. Lett. 2001, 11, 475; (b)
Jiang, B.; Xiong, W.; Zhang, X.; Zhang, F. Org. Proc. Res. Dev. 2001, 5, 531.
17. For reviews of the Suzuki–Miyaura reaction, see (a) Miyaura, N.; Suzuki, A.
Chem. Rev. 1995, 95, 2457; (b) Miyaura, N. Top. Curr. Chem. 2002, 219, 11; (c)
Suzuki, A.; Yamamoto, Y. Chem. Lett. 2011, 40, 894; (d) Kotha, S.; Lahiri, K.;
Kashinath, D. Tetrahedron 2002, 48, 9633; (e) Li, J. J.; Gribble, G. W. Palladium in
Heterocyclic Chemistry; Pergamon Press: Oxford, 2000; (f) de Meijere, A.;
Diedrich, F. Metal Catalyzed Cross-Coupling Reactions; Wiley-VCH: Heidelberg,
2004.
18. Reviews of regioselective Pd catalyzed cross-coupling reactions of
polybrominated substrates (a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron
2005, 61, 2245; (b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic,
M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283; (c) Wang, R.; Manabe, K.
Financial support by the Higher Education Commission Pakistan
and by the DAAD (scholarships for S.A. and K.S.) is gratefully
acknowledged. Financial support by the European Social Fund
(EFRE program) is also acknowledged. The work was also sup-
ported by the TÁMOP-4.2.1/B-09/KONV-2010-007 project. The
project is implemented through the New Hungary Development
Plan, co-financed by the European Social Fund and the European
Regional Development Fund.
Synthesis 2009, 1405; For
a simple guide for the prediction of the site-
References and notes
selectivity of palladium catalyzed cross-coupling reactions based on 1H NMR
data of the non-halogenated derivatives, see (d) Handy, S. T.; Zhang, Y. Chem.
Commun. 2006, 299.
1. (a) Bekhit, A. A.; Hymete, A.; Damtew, A.; Mohamed, A. M.; Bekhit Ael, D. J.
Enzyme Inhib. Med. Chem. 2012, 27, 69; (b) Bernardino, A. M.; Azevedo, A. R.;
Pinheiro, L. C.; Borges, J. C.; Paixao, I. C.; Mesquita, M.; Souza, T. M.; Dos Santos,
M. S. Org. Med. Chem. Lett. 2012, 2, 3; (c) Cao, B.; Wang, Y.; Ding, K.; Neamati, N.;
Long, Y. Q. Org. Biomol. Chem. 2012, 10, 1239; (d) Chen, D.; Wang, Y.; Ma, Y.;
Xiong, B.; Ai, J.; Chen, Y.; Geng, M.; Shen, J. ChemMedChem 2012, 1057, 7; (e)
Choi, B.; Kim, J.; Lee, E. S.; Bang, D.; Sohn, S. Eur. J. Pharmacol. 2011, 657, 167; (f)
Jarak, I.; Marjanovic, M.; Piantanida, I.; Kralj, M.; Karminski-Zamola, G. Eur. J.
Med. Chem. 2011, 46, 2807; (g) Racane, L.; Kraljevic Pavelic, S.; Ratkaj, I.;
Stepanic, V.; Pavelic, K.; Tralic-Kulenovic, V.; Karminski-Zamola, G. Eur. J. Med.
Chem. 2012, 55, 108; (h) Suzuki, Y.; Oishi, S.; Takei, Y.; Yasue, M.; Misu, R.;
Naoe, S.; Hou, Z.; Kure, T.; Nakanishi, I.; Ohno, H.; Hirasawa, A.; Tsujimoto, G.;
Fujii, N. Org. Biomol. Chem. 2012, 10, 4907; (i) Thapa, P.; Karki, R.; Thapa, U.;
Jahng, Y.; Jung, M. J.; Nam, J. M.; Na, Y.; Kwon, Y.; Lee, E. S. Bioorg. Med. Chem.
Lett. 2010, 18, 377.
2. (a) Fluorine in Bioorganic Chemistry; Filler, R., Kobayasi, Y., Yagupolskii, L. M.,
Eds.; Elsevier: Amsterdam, 1993; (b) Filler, R. Fluorine Containing Drugs in
Organofluorine Chemicals and their Industrial Application; Pergamon: New York,
1979. Chapter 6; (c) Hudlicky, M. Chemistry of Organic Compounds; Ellis
Horwood: Chichester, 1992; (d) Kirsch, P. Modern Fluoroorganic Chemistry;
VCH: Weinheim, 2004; (e) Chambers, R. D. Fluorine in Organic Chemistry;
Blackwell Publishing CRC Press, 2004; (f) Tredwell, M.; Gouverneur, V. Org.
Biomol. Chem. 2006, 4, 26; (g) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119;
(h) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 17, 2561; (i) Taylor, S. D.; Kotoris,
C. C.; Hum, G. Tetrahedron 1999, 55, 12431; (j) Purrington, S. T.; Kagen, B. S.;
Patrick, T. B. Chem. Rev. 1986, 86, 997.
19. (a) Reimann, S.; Sharif, M.; Hein, M.; Villinger, A.; Wittler, K.; Ludwig, R.;
Langer, P. Eur. J. Org. Chem. 2012, 604; (b) Sharif, M.; Zeeshan, M.; Reimann, S.;
Villinger, A.; Langer, P. Tetrahedron Lett. 2010, 51, 2810; (c) Sharif, M.; Reimann,
S.; Villinger, A.; Langer, P. Synlett 2010, 913.
20. For the reaction of 2-chloro-4-iodo-5-(trifluoromethyl)pyridine with
arylboronic acids, see: Janssen Pharmaceuticals, Bartolome-Nebreda, J. M.;
MacDonald, G. J.; Van Gool, M. WO2010/12758 A1, 2010.
21. Kawabe, T.; Ishigaki, M.; Sato, T.; Yamamoto, S.; Hasegawa, Y., U.S. Patent Appl.
Publ. (2008), US 20080275057 A1 20081106.
22. Synthesis of 6-chloro-2-(4-ethoxyphenyl)-3-(trifluoromethyl)-pyridine (3g):
A
DMF/water solution (1:1, 2 mL per 1 mmol of 1) of K3PO4 (1.5 mmol),
Pd(OAc)2 (2 mol %), and arylboronic acid 2a–n (0.9 mmol) was stirred at
room temperature for 8–12 h (tlc control). After completion of the reaction, the
mixture was extracted with CH2Cl2 and the combined organic layers were
dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue
was purified by column chromatography (silica gel, EtOAc/heptane = 1:4).
Starting with 1 (216 mg, 1.00 mmol), K3PO4 (165 mg, 1.50 mmol), Pd(OAc)2
(2 mol %), 4-ethoxyphenylboronic acid (149 mg, 0.90 mmol), and a solution of
DMF and water (1:1, 5 mL), 3g was isolated as a white solid (235 mg, 78%),
mp = 74–75 °C. 1H NMR (300 MHz, CDCl3): d = 1.36 (t, 3H, CH3), 4.01 (q, 2H,
CH2), 6.87 (d, J = 8.91 Hz, 2H, ArH), 7.30 (dd, J = 8.37, J = 0.75 Hz, 1H, ArH), 7.40
(d, J = 8.46 Hz, 2H, ArH), 7.90 (d, J = 8.51 Hz, 1H, ArH). 13C NMR (75.46 MHz,
CDCl3): d = 13.7 (CH3), 62.5 (OCH2), 113.1 (CH), 115.3 (d, 1JCF = 252.42 Hz, CF3),
120.9 (CH), 122.0 (q, 2JCF = 63.26, Hz, C), 124.3(C), 126.6 (C), 127.9 (C), 129.1(C),
4
3
129.3 (d, JCF 1.95 Hz CH), 136.6 (q, JCF = 5.01 Hz CH), 152.3 (C), 157.9 (d,
JCF = 2.82 Hz, C), 159 (C). 19F NMR (282.4 MHz, CDCl3): d = À57.02 (CF). IR (ATR,
3. Mcarthur, S. G.; Goetschi, E.; Wichmann, J.; Woltering, T. J. PCT Int. Appl. 2007,
WO 2007110337 A1 20071004.
cmÀ1):
m = 3064 (w), 2980 (m), 2877 (w), 1660 (w), 1544 (w), 1140 (m), 816 (s).
MS (EI, 70 eV): m/z (%) 301 (57) [M+], 273 (100), 238 (12). HRMS (EI) calcd for
14H11ClF3NO [M+]: 301.04758, found 301.04758.
4. Xiong, W.-N.; Yang, C.-G.; Jiang, B. Bioorg. Med. Chem. Lett. 2001, 9, 1773–1780.
5. (a) Gill, N. S.; James, K. B.; Lions, F.; Potts, K. T. J. Am. Chem. Soc. 1952, 74, 4923;
(b) Vysotskii, V. I.; Tilichenko, M. N. Khimiya Geterotsiklicheskikh Soedinenii
1976, 3, 383; (c) Katritzky, A. R.; Al-Omran, F.; Patel, R. C.; Thind, S. S. J. Chem.
Soc., Perkin Trans. 1 1980, 1890; (d) Kharchenko, V. G.; Promonenkov, V. K.;
Chalaya, S. N.; Lisina, S. N. Khimiya Geterotsiklicheskikh Soedinenii 1983, 12,
1691; (e) Kelly, T. R.; Lebedev, R. J. Org. Chem. 2002, 67, 2197; (f) Ko, S.; Tao, C.-
F. Tetrahedron 2006, 62, 7293; (g) Craig, D.; Henry, G. D. Tetrahedron Lett. 2005,
46, 2559.
C
23. CCDC-915015 contains all crystallographic details of this publication and is
ordered from the following address: Cambridge Crystallographic Data Centre,
12 Union Road, GB-Cambridge CB21EZ; Fax: (+44)1223 336 033; or
24. Synthesis of 2,6-bis(4-methoxyphenyl)-3-(trifluoromethyl)-pyridine (4e): A DMF/
water solution (1:1, 2 mL per 1 mmol of 1) of K3PO4 (1.5 mmol), Pd(OAc)2
(2 mol %), and arylboronic acid 2 (2.2 mmol) was stirred at room temperature
for 8–12 h (tlc control). After completion of the reaction, the mixture was
extracted with CH2Cl2 and the combined organic layers were dried (Na2SO4),
6. (a) Pfüller, O. C.; Sauer, J. Tetrahedron Lett. 1998, 39, 8821; (b) Lahue, B. R.; Lo,
S.-M.; Wan, Z.-K.; Woo, G. H. C.; Snyder, J. K. J. Org. Chem. 2004, 69, 7171; (c)
Boger, D. L.; Panek, L. S. J. Org. Chem. 1981, 46, 2179.