3 (a) L. R. MacGillivray, J. L. Reid and J. A. Ripmeester, J. Am.
ˇ ´
Chem. Soc., 2000, 122, 7817–7818; (b) T. Frisˇcic, D. M. Drab and
L. R. MacGillivray, Org. Lett., 2004, 6, 4647–4650; (c) S. Dutta,
Isomerisation of HH-BCBPCB and HT-BCBPCB
The acid catalysed isomerisation of rctt-4,4-tpcb to rtct-tpcb and
the isomerisation of rctt-HH-4,4-BPCD and rctt-HT-4,4-BPCD
to their corresponding rcct-isomers have been reported from our
laboratory4j,7b,14 and by Bricen˜o.5e,15 The above two cyclobutane
compounds were also observed to undergo similar isomerisation
from rctt- to rcct- isomers under acidic pH, which was observed
to be faster upon heating. The 1H NMR spectrum confirming the
isomerisation for HH-dimer is shown in ESI{ and the structures
of the corresponding rcct-isomers are shown in Scheme 1. Two
doublet peaks for cyclobutane protons for rctt-HH-4,4-BCBPCB
converts to four triplet peaks upon heating, which indicate that
the degeneracy of the cyclobutane protons is lifted due to
isomerisation to rcct-isomer (symmetry reduced). We also
observed that the isomerisation is not quantitative because the
product rcct-isomer is less stable than rctt-isomers as there are
three substituents on the same side of the cyclobutane ring
resulting in steric hindrance. The rctt-HT-4,4-BCBPCB also
undergoes similar isomerisation under similar conditions as was
ˇ
D.-K. Bucar and L. R. MacGillivray, Org. Lett., 2011, 13,
2260–2262; (d) R. Santra and K. Biradha, CrystEngComm, 2008,
10, 1524–1526; (e) R. Santra and K. Biradha, CrystEngComm, 2011,
ˇ
13, 3246–3257; (f) D.-K. Bucar, A. Sen, S. V. S. Mariappan and L. R.
MacGillivray, Chem. Commun., 2012, 48, 1790–1792; (g) T. Frisˇcic
and L. R. MacGillivray, Chem. Commun., 2005, 5748–5750; (h) X.
Mei, S. Liu and C. Wolf, Org. Lett., 2007, 9, 2729–2732; (i) C.
Avendano and A. Bricen˜o, CrystEngComm, 2009, 11, 408–411; (j)
B. R. Bhogala, B. Captain, A. Parthasarathy and V. Ramamurthy,
J. Am. Chem. Soc., 2010, 132, 13434–13442; (k) S. Ohba, H. Hosomi
and Y. Ito, J. Am. Chem. Soc., 2001, 123, 6349–6352.
4 (a) Y. Ito, B. Borecka, G. Olovsson, J. Trotter and J. R. Scheffer,
Tetrahedron Lett., 1995, 36, 6087–6090; (b) Y. Ito, B. Borecka, J.
Trotter and J. R. Scheffer, Tetrahedron Lett., 1995, 36, 6083–6086; (c)
A. Natarajan, J. T. Mague, K. Venkatesan and V. Ramamurthy, Org.
Lett., 2005, 7, 1895–1898; (d) S. Yamada, Y. Nojiri and M.
Sugawara, Tetrahedron Lett., 2010, 51, 2533–2535; (e) S. Yamada
and Y. Tokugawa, J. Am. Chem. Soc., 2009, 131, 2098–2099; (f) S.
Yamada, N. Uematsu and K. Yamashita, J. Am. Chem. Soc., 2007,
129, 12100–12101; (g) G. K. Kole, L. L. Koh, S. Y. Lee, S. S. Lee and
J. J. Vittal, Chem. Commun., 2010, 46, 3660–3662; (h) G. K. Kole,
G. K. Tan and J. J. Vittal, Org. Lett., 2010, 12, 128–131; (i) G. K.
Kole, G. K. Tan and J. J. Vittal, CrystEngComm, 2011, 13,
3138–3145; (j) G. K. Kole, G. K. Tan and J. J. Vittal, J. Org.
Chem., 2011, 76, 7860–7865; (k) T. Odani, S. Okada, C. Kabuto, T.
Kimura, S. Shimada, H. Matsuda, H. Oikawa, A. Matsumoto and H.
Nakanishi, Cryst. Growth Des., 2009, 9, 3481–3487.
ˇ ´
1
observed in H NMR spectroscopy (see ESI{).
Conclusion
We have discussed several salts of HPVBA obtained by reacting
with inorganic acids and organic diamines, and they were
investigated for their photoreactivity. Both the HH- and HT-
dimers of this unsymmetric olefin were obtained stereoselec-
tively. It has been shown that the solvents present in the salts
play a crucial role in their photoreactivity. More interestingly,
both the HT- and HH-dimers could be obtained from same salt
former, H2SO4, just by changing its concentration during
crystallization. Such flipping of orientation from HT- to HH-
arrangement by single salt former was not known before.
Although the predictability of solid state structure of salts is
poor, it is shown that the strategy of salt formation works well in
organic synthesis and it warrants much more attention to
understand how two ionic counterparts combine and construct
the solid state packing in salts to gain credibility in crystal
engineering.
5 (a) Q. Chu, D. C. Swenson and L. R. MacGillivray, Angew. Chem.,
Int. Ed., 2005, 44, 3569–3572; (b) R. Santra and K. Biradha, Cryst.
Growth Des., 2010, 10, 3315–3320; (c) G. K. Kole, G. K. Tan and J. J.
Vittal, Cryst. Growth Des., 2011, 12, 326–332; (d) M. H. Mir, J. X.
Ong, G. K. Kole, G. K. Tan, M. J. McGlinchey, Y. Wu and J. J.
Vittal, Chem. Commun., 2011, 47, 11633–11635; (e) Y. Hill and A.
Bricen˜o, Chem. Commun., 2007, 3930–3932.
6 (a) N. L. Toh, M. Nagarathinam and J. J. Vittal, Angew. Chem., Int.
Ed., 2005, 44, 2237–2241; (b) G. S. Papaefstathiou, I. G. Georgiev, T.
ˇ ´
Frisˇcic and L. R. MacGillivray, Chem. Commun., 2005, 3974–3976;
(c) J. F. Eubank, V. C. Kravtsov and M. Eddaoudi, J. Am. Chem.
Soc., 2007, 129, 5820–5821; (d) A. Michaelides, S. Skoulika and
M. G. Siskos, CrystEngComm, 2008, 10, 817–820; (e) D. Liu, Z.-G.
Ren, H.-X. Li, J.-P. Lang, N.-Y. Li and B. F. Abrahams, Angew.
Chem., Int. Ed., 2010, 49, 4767–4770; (f) M. H. Mir, L. L. Koh, G. K.
Tan and J. J. Vittal, Angew. Chem., Int. Ed., 2010, 49, 390–393; (g)
A. M. P. Peedikakkal and J. J. Vittal, Inorg. Chem., 2010, 49, 10–12.
7 (a) G. S. Papaefstathiou and L. R. MacGillivray, Angew. Chem., Int.
Ed., 2002, 41, 2070–2073; (b) A. M. P. Peedikakkal, C. S. Y. Peh,
L. L. Koh and J. J. Vittal, Inorg. Chem., 2010, 49, 6775–6777.
8 (a) L. Addadi and M. Lahav, J. Am. Chem. Soc., 1979, 101,
2152–2156; (b) L. Addadi, J. Van Mil and M. Lahav, J. Am. Chem.
Soc., 1982, 104, 3422–3429; (c) L. Addadi and M. Lahav, Pure Appl.
Chem., 1979, 51, 1269–1284.
9 E. Elacqua, P. Kaushik, R. H. Groeneman, J. C. Sumrak, D.-K.
ˇ
Bucar and L. R. MacGillivray, Angew. Chem., Int. Ed., 2012, 51,
1037–1041.
10 S. Yamada, Org. Biomol. Chem., 2007, 5, 2903–2912.
11 M. C. Etter, Acc. Chem. Res., 1990, 23, 120–126.
12 G.-B. Yan, Acta Crystallogr. Sect. E, 2006, 62, o4942–o4943.
13 (a) T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48–76; (b) M. Felloni,
A. J. Blake, P. Hubberstey, C. Wilson and M. Schroder,
CrystEngComm, 2002, 4, 483–495.
Acknowledgements
We gratefully acknowledge the Ministry of Education,
Singapore, for financial support through NUS FRC Grant
R-143-000-439-112. We sincerely thank Hong Yimian for her
kind help with the X-ray crystallography.
References
1 (a) V. Ramamurthy and K. Venkatesan, Chem. Rev., 1987, 87,
433–481; (b) M. Nagarathinam and J. J. Vittal, Macromol. Rapid
Commun., 2006, 27, 1091–1099; (c) L. R. MacGillivray, J. Org.
Chem., 2008, 73, 3311–3317; (d) M. Nagarathinam, A. M. P.
Peedikakkal and J. J. Vittal, Chem. Commun., 2008, 5277–5288.
2 G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647–678.
14 A. M. P. Peedikakkal, L. L. Koh and J. J. Vittal, Chem. Commun.,
2008, 441–443.
15 (a) Y. Hill, M. Linares and A. Bricen˜o, New J. Chem., 2012, 36,
554–557; (b) A. Bricen˜o, A. Fulgence, Y. Hill and R. Atencio, Dalton
Trans., 2008, 3275–3278.
This journal is ß The Royal Society of Chemistry 2012
CrystEngComm, 2012, 14, 7438–7443 | 7443