STERICALLY CONGESTED DI(AMINOSTYRYL)PYRAZINES
[21] H. Detert, O. Sadovski, E. Sugiono, J. Phys. Org. Chem. 2004, 17, 1046.
[22] H. Detert, E. Sugiono, J. Lumin. 2005, 112, 372.
[23] J. M. Hancock, S. A. Jenekhe, Macromolecules 2008, 41, 6864.
[24] Y. Yamaguchi, S. Kobayashi, T. Wakamiya, Y. Matsubara, Z.-i. Yoshida,
Angew. Chem. Int. Ed. 2005, 44, 7040.
[25] J. Schönhaber, W. Frank, T. J. J. Müller, Org. Lett. 2010, 12, 4122.
[26] J. Y. Yaung, Dyes Pigm. 2006, 71, 245.
[27] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003,
103, 3899.
[28] C. Hättig, A. Hellweg, A. Köhn, J. Am. Chem. Soc. 2006, 128, 15672.
[29] H. H. Jaffé, M. Orchin, Theory and Application of Ultraviolet
Spectroscopy, Wiley, New York, 1962.
[30] P. Suppan, N. Ghoneim, Solvatochromism, Royal Society of
Chemistry, Cambridge, U.K., 1997.
[31] H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano, Chem. Rev.
2010, 110, 2620.
[32] J. Han, K. Burgess, Chem. Rev. 2010, 110, 2709.
[33] A. Roznowska, V. I. Tomin, J. Fisz, K. Hubisz, Opt. Spectr. 2011, 111, 66.
[34] S. M. Brombosz, A. J. Zucchero, P. L. McGrier, U. H. F. Bunz, J. Org.
Chem. 2009, 74, 8909.
[35] J. Tolosa, K. M. Solntsev, L. M. Tolbert, U. H. F. Bunz, J. Org. Chem.
2010, 75, 523.
CONCLUSION
Steric congestion around the amino groups of di(aminostyryl)
pyrazines modulates the internal charge transfer in these fluoro-
phores. Large solvatochromic shifts of the fluorescence and
Stokes shifts up to 7000 cm–1 result from enforced electronic
interaction conquering steric hindrance. A correlation of Δn(ENT )
for 13 shows three regimes of polarity-induced shifts. A strong
sensitivity in low-polar solvents is followed by weak solvatochro-
mism in the medium polarity range. In highly polar solvents, the
sensitivity increases strongly. The latter appears also in HBD
solvents – but at significantly higher ENT values. With increasing
solvent polarity, a stepwise planarization of the amino-aryl unit
may account for these changes. Protonation occurs first on the
terminal amino groups; their basicity increases upon excitation.
Only in strongly acidic media, the central pyrazine is protonated.
These protonations alter the charge distribution and result in
initial hypsochromic shifts followed by bathochromic shifts of
excitation and emission. These new distyrylpyrazines are very
promising fluorescent probes for the study of micropolarity of
different heterogeneous objects, including biological systems.
Because of strong solvatochromism and adjustable intramolecu-
lar charge transfer these fluorophores must have significant
nonlinear optical properties.
[36] A. J. Zucchero, J. Tolosa, L. M. Tolbert, U. H. F. Bunz, Chem. Eur. J.
2009, 15, 13075.
[37] J. Tolosa, J. J. Bryant, K. M. Solntsev, K. Brödner, L. M. Tolbert,
U. H. F. Bunz, Chem. Eur. J. 2011, 17, 13726.
[38] J. C. Collette, A. W. Harper, Proc. SPIE 2002, 4809, 122.
[39] M. Nohara, M. Hasegawa, C. Hosokawa, H. Tokailin, T. Kusumoto,
Chem. Lett. 1990, 19, 189.
[40] T. Takahashi, K. Satake, Yakugaku Zasshi 1952, 6, 1183. CAN:
47:44596
[41] S. M. Al-Hazmy, A. S. Babaqi, E. Daltrozzo, M. Klink, J. Sauter,
E. M. Ebeid, J. Photochem. Photobiol. A 1999, 122, 17.
[42] S. A. El-Daly, E. Z. M. Ebeid, S. M. El-Hazmy, A. S. Babaqi, Z. El-Gohary,
G. Guportail, J. Chem. Sci. 1993, 105, 651.
SUPPORTING INFORMATION
Supporting Information
[43] H. Detert, V. Schmitt, S. Glang, Mater. Res. Soc. Symp. Proc. 2006,
937E, 2006. 0937-M07-54.
Acknowledgements
[44] H. Detert, V. Schmitt, J. Phys. Org. Chem. 2006, 19, 603.
[45] V. Schmitt, J. Fischer, H. Detert, ISRN Org. Chem. 2011, Article ID
589012. DOI: 10.5402/2011/589012
The authors gratefully acknowledge valuable advice from the
referees and generous financial support from the Deutsche
Forschungsgemeinschaft.
[46] J. Fischer, V. Schmitt, D. Schollmeyer, H. Detert, Acta Cryst. 2011,
E67, o875.
[47] Experimental and analytical details are given in the supplementary
material.
[48] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry,
Wiley-VCH, Weinheim, Germany, 2003.
REFERENCES
[1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
[2] T. Goodson, III, W. Li, A. Gharavi, L. Yu, Adv. Mater. 1997, 9, 639.
[3] K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach,
Wiley-VCH, Weinheim, New York, 1998.
[4] J. Gierschner, M. Ehni, H.-J. Egelhaaf, B. Millian, D. Beljonne,
H. Benmansour, G. C. Bazan, J. Chem. Phys. 2005, 123, 144914.
[5] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. 1998, 110, 416.
[6] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed Engl.
1998, 37, 402.
[49] H. Detert, D. Schollmeyer, E. Sugiono, Eur. J. Org. Chem. 2001, 2927.
[50] M. Johnson, P. R. Ogilby, J. Phys. Chem. A 2008, 112, 7831.
[51] J. Catalán, J. L. G. de Paz, C. Reichardt, J. Phys. Chem. A 2010, 114, 6226.
[52] J. Catalán, C. Reichardt, J. Phys. Chem. A 2012, in print. DOI: 10.1021/
jp211330x
[53] E. Buncel, S. Rajagopal, J. Org. Chem. 1984, 54, 798.
[54] E. Buncel, S. Rajagopal, Acc. Chem. Res. 1990, 23, 226.
[55] M. J. Kamlet, J. L. Abboud, R. W. Taft, J. Am. Chem. Soc. 1977, 99, 6027.
[56] C.-L. Gáspár, I. Panea, I. Bâldea, Dyes Pigm. 2008, 76, 455.
[57] N. Sharma, S. K. Jain, R. C. Rastogi, Bull. Chem. Soc. Jpn. 2003,
76, 1741.
[7] A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen,
C. Bubeck, Phys. Rev. B 1996, 53, 4367.
[8] R. M. Gurge, M. Hickl, G. Krause, P. M. Lahti, B. Hu, Z. Yang,
F. E. Karasz, Polym. Adv. Technol. 1998, 9, 504.
[9] T. A. Skotheim, J. R. Reynolds, Handbook of Conducting Polymers,
Part III: Properties and Characterization of Conducting Polymers,
CRC Press, Boca Raton, 2007.
[58] D. M. Togashi, S. M. B. Costa, A. J. F. N. Sobral, A. M. d´A. R. Gonsalves,
Chem. Phys. 2004, 300, 267.
[59] V. Brückner, K.-H. Feller, U.-W. Grummt, Application of time-resolved
optical spectroscopy, Akademische Verlagsgesellschaft, Leipzig,
Germany, 1990, 69.
[10] B. Strehmel, A. M. Sarker, H. Detert, Chemphyschem 2003, 4, 101.
[11] J. C. Collette, A. W. Harper, Proc. SPIE 2003, 5212, 184.
[12] H. Y. Woo, B. Liu, B. Kohler, D. Korystov, A. Mikhailovsky, G. C. Bazan,
J. Am. Chem. Soc. 2005, 127, 14721.
[13] P. Czerney, U.-W. Grummt, Sens. Actuators B 1997, 39, 395.
[14] V. Schmitt, S. Glang, J. Preis, H. Detert, Sens. Lett. 2008, 6, 1.
[15] E. Lippert, W. Lüder, F. Moll, W. Nägele, H. Boos, H. Proigge,
I. Seibold-Blankenstein, Angew. Chem. 1961, 73, 659.
[16] W. Rettig, Angew. Chem. 1986, 98, 969.
[17] W. Rettig, Angew. Chem. Int. Ed Engl. 1986, 25, 971.
[18] J. Dobkowski, J. Michl, J. Waluk, Phys. Chem. Chem. Phys. 2003, 5, 1027.
[19] N. A. Nemkovich, H. Detert, V. Schmitt, Chem. Phys. 2010, 378, 37.
[20] J. Wolff, R. Wortmann, J. Prakt. Chem. 1998, 340, 99.
[60] C. Wink, D. Schollmeyer, H. Detert, Acta Cryst. 2011, E67, o3336.
[61] C. E. M. Carvalho, I. M. Brinn, A. V. Pinto, M. d. C. F. R. Pinto, J. Photochem.
Photobiol A: Chem. 2000, 136, 25.
[62] N. Ghoneim, P. Suppan, Spectrochim. Acta A 1995, 51, 1043.
[63] C. A. T. Laia, S. M. B. Costa, Phys. Chem. Chem. Phys. 1999, 1, 4409.
[64] M. E. Martín, M. L. Sánchez, J. C. Corchado, A. Munoz-Losa, I. F. Galván,
F. J. Olivarez del Valle, M. A. Aguilar, Theor. Chem. Acc. 2011, 128,
783.
[65] F. Terenziani, A. Painelli, C. Katan, M. Charlot, M. Blanchard-Desce,
J. Am. Chem. Soc. 2006, 128, 15742.
[66] N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings
Publishing, Menlo Park, USA, 1978, 183.
[67] Th. Förster, Z. Elektrochem. 1950, 54, 42.
J. Phys. Org. Chem. (2012)
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc