Scheme 1. Synthetic Route to 4-Sulfonamidoquinolines
Cascade reactions, which allow multiple transforma-
tions in a one-pot process, were recognized as an envi-
ronmentally friendly and atom-economical strategy for
building molecular complexity.5 Several examples in con-
structing 4-aminoquinolines using this strategy have
emerged. For example, the research groups of Schmidt,6
Tverdomed,7 Strekowski,8 Luo,9 and Rossi10 have reported
pioneering work on synthesis of 4-aminoquinolines and
their derivatives from pyrazolium-3-carboxylates, 2-amino-
benzonitriles, 2-(trifluoromethyl)anilines, o-oxazoline-
substituted anilines, and β-(2-aminoaryl) R,β-ynones, re-
spectively. Despite these notable advances in this area,
some challenges still exist, such as the difficulty to access
substrate, harsh reaction conditions, and inferior tolerance
of functional groups. It continues to be an area of intense
interest to develop new protocols to build such a valuable
molecule from cheap and readily accessible starting mate-
rials by concise steps under milder reaction conditions.
A propargylÀallenyl isomerization/6π-electrocycliza-
tion cascade process has become an important synthetic
method to access 4-substituted quinolines from alkynyl imines
(Scheme 1, eq 1).11 On the other hand, a copper-catalyzed 1,3-
dipole cycloaddition/ringÀchain isomerization/ketenimine
formation cascade process was well developed by Chang,
Wang, and other groups (Scheme 1, eq 2).12 Considering
the advancement of alkynyl imine chemistry and keten-
imine chemistry, we envisioned that 4-sulfonamidoquino-
lines 3 could be synthesized via a cascade reaction of N-aryl
alkynyl imines 1 with sulfonyl azides 2. Moreover, the
sulfonamide skeleton is often used in the design of
pharmaceuticals.13 Over 30 drugs containing N-arylsulfon-
amides are in clinical use as antibacterials,14 non-nucleo-
tide reverse transcriptase inhibitors,15 antitumor agents,16
and HIV-1 protease inhibitors.17 Herein, we disclose a
highly practical procedure to build 4-sulfonamidoquino-
lines in one step, in which a novel copper-catalyzed
1,3-dipole cycloaddition/ketenimine formation/6π-
electrocyclization/[1,3]-H shift cascade reaction was
involved (Scheme 1, eq 3). The reaction features mild
reaction conditions and a general substrate scope.
(11) (a) Sangu, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2004, 6, 353.
(b) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. (c)
Gao, G.-L.; Niu, Y.-N.; Yan, Z.-Y.; Wang, H.-L.; Wang, G.-W.;
Shaukat, A.; Liang, Y.-M. J. Org. Chem. 2010, 75, 1305. (d) Li, S.;
Yuan, Y.; Zhu, J.; Xie, H.; Chen, Z.; Wu, Y. Adv. Synth. Catal. 2010,
352, 1582. (e) Zhou, H.; Liu, L.; Xu, S. J. Org. Chem. 2012, 77, 9418.
(12) (a) Cho, S. H.; Chang, S. Angew. Chem., Int. Ed. 2008, 47, 2836.
(b) Yoo, E. J.; Chang, S. Org. Lett. 2008, 10, 1163. (c) Yoo, E. J.; Chang,
S. Curr. Org. Chem. 2009, 13, 1766. (d) Lu, P.; Wang, Y. G. Synlett 2010,
165. (e) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Chem.;Asian J.
2011, 6, 2618.
(4) (a) Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373.
(b) Wolf, C.; Lerebours, R. J. Org. Chem. 2003, 68, 7077. (c) Jonckers,
T. H.; Maes, B. U. W.; Lemiere, G. L. F.; Rombouts, G.; Pieters, L.;
Haemers, A.; Dommisse, R. A. Synlett 2003, 615. (d) Jaime-Figueroa, S.;
Liu, Y. Z.; Muchowski, J. M.; Putman, D. G. Tetrahedron Lett. 1998, 39,
1313. (e) Margolis, B. J.; Long, K. A.; Laird, D. L. T.; Ruble, J. C.;
Pulley, S. R. J. Org. Chem. 2007, 72, 2232. (f) Ronco, C.; Jean, L.;
Outaabout, H.; Renard, P.-Y. Eur. J. Org. Chem. 2011, 302.
(5) (a) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem.
Rev. 2005, 105, 1001. (b) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev.
2009, 38, 2993. (c) Climent, M. J.; Corma, A.; Iborra, S. Chem. Rev.
2011, 111, 1072.
(13) (a) Casini, A.; Scozzafava, A.; Supuran, C. T. Expert Opin. Ther.
Pat. 2002, 12, 1307. (b) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.;
Supuran, C. T. Curr. Med. Chem. 2003, 10, 925.
(6) (a) Dreger, A.; Camuna, R. C.; Muenster, N.; Rokob, T. A.;
Papai, I.; Schmidt, A. Eur. J. Org. Chem. 2010, 4296. (b) Schmidt, A.;
Muenster, N.; Dreger, A. Angew. Chem., Int. Ed. 2010, 49, 2790.
(7) Duda, B.; Tverdomed, S. N.; Ionin, B. I.; Roeschenthaler, G.-V.
Eur. J. Org. Chem. 2012, 3684.
(8) Strekowski, L.; Janda, L.; Lee, H. J. Org. Chem. 1997, 62, 4193.
(9) Luo, F.-T.; Ravi, V. K.; Xue, C. Tetrahedron 2006, 62, 9365.
(10) Rossi, E.; Abbiati, G.; Canevari, V.; Nava, D.; Arcadi, A.
Tetrahedron 2004, 60, 11391.
(14) Hansch, C.; Sammes, P. G.; Taylor, J. B. Comprehensive Med-
icinal Chemistry; Pergamon Press: Oxford, 1990; Vol. 2, Chapter 7.
(15) Drews, J. Science 2000, 287, 1960.
(16) Owa, T.; Nagasu, T. Expert Opin. Ther. Pat. 2000, 10, 1725.
(17) Turner, S. R.; Strohbach, J. W.; Tommasi, R. A.; Aristoff, P. A.;
Johnson, P. D.; Skulnick, H. I.; Dolak, L. A.; Seest, E. P.; Tomich, P. K.;
Bohanan, M. J.; Horng, M. M.; Lynn, J. C.; Chong, K. T.; Hinshaw,
R. R.; Watenpaugh, K. D.; Janakiraman, M. N.; Thaisrivongs, S.
J. Med. Chem. 1998, 41, 3467.
Org. Lett., Vol. 15, No. 7, 2013
1481