conditions have allowed direct CꢀH functionalization.7,8
N-Alkyl and N-alkenyl amidines were also recently shown
to be versatile units giving access to various azahetero-
cycles under aerobic oxidativeconditions, as demonstrated
by Chiba in a series of publications.9
Scheme 1. Cu-Catalyzed Aerobic Process Involving Amidines
We have been interested in tandem metal-catalyzed
transformation for the synthesis of a heterocyclic structure10
including strategies involving CꢀNandCꢀH bond functional-
ization.11 Recently, we became involved in the development of
Cu-catalyzed aerobic oxidative transformation to build a
CꢀN bond.12 In this context, we extended the ChanꢀLamꢀ
Evans reaction13 to the selective N-arylation of amidines and
the direct synthesis of benzimidazoles (Scheme 1A).14 Given
the proximity of imidazoles with such heterocycles and the
interest associated to their broad applications,15 we reasoned
that they could be prepared following a similar transform-
ation.16 Unfortunately, attempts to react amidines with
vinylboronic acid derivatives, instead of arylboronic acid,
under similar reaction conditions were unsuccessful.
could be formed according to a tandem sequence involving
a direct N-alkynylation followed by a cyclizative hydro-
amination (Scheme 1B).17 Support for the feasibility of the
N-alkynylation was based on the work of Sthal, describing
a Cu-catalyzed aerobic oxidative synthesis of N-alkynyl-
heterocycles and N-alkynylamides, recently extended to
the synthesis of yninines.18,19 In addition, Fujii and Ohno
demonstrated that N-arylated amidines could react with
1-triisopropylsilethynyl benziodoxolone under Cu-catalyzed
reaction conditions to afford quinazolines and that the
reaction could rely on the formation of an N-alkylynated
species.20
Herein, we report conditions that allow trisubstituted
imidazoles tobeformedfrom easilyavailable amidines and
terminal alkynes. The new Cu-catalyzed process used
oxygen as a co-oxidant and consisted of the regioselective
addition of two distinct N-atoms across the alkyne.
To explore the reactivity of amidines toward acetylenes,
we followed Stahl’s work.19a In that event, N-tolyl benzimi-
damide (1a) and ethynylbenzene 2a (2 equiv) were reacted in
As an alternative to the boronic acid residue, we thought
to use a terminal alkyne, reasoning that the imidazole
(8) For general reviews dealing with CꢀH functionalization, see: (a)
CꢀH activation. In Topics in Current Chemistry; Yu, J.-Q., Shi, Z., Eds.;
€
Springer, 2010; Vol. 292, pp 1ꢀ380. (b) Wencel-Delord, J.; Droge, T.; Liu,
F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (c) Cho, S.; Kim, J. Y.;
Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068–5083. (d) Stokes,
B. J.; Driver, T. G. Eur. J. Org. Chem. 2011, 39, 4071–4088. (e)
Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.
2012, 51, 8960–9009. (f) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord,
J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236–10254.
(9) (a) Wang, Y.-F.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134,
3679–3679. (b) Toh, K. K.; Sanjaya, S.; Sahnoun, S.; Chong, S. Y.;
Chiba, S. Org. Lett. 2012, 14, 2290–2292. (c) Sanjaya, S.; Chua, H. S.;
Chiba, S. Synlett 2012, 23, 1657–1661. (d) Wang, Y.-F.; Chen, H.;
Chiba, S. J. Am. Chem. Soc. 2012, 134, 11980–11983. (e) Sanjaya, S.;
Chiba, S. Org. Lett. 2012, 14, 5342–5345. (f) Chen, H.; Sanjaya, S.;
Wang, Y.-F.; Chiba, S. Org. Lett. 2013, 15, 212–215.
(10) (a) Pinto, A.; Jia, Y.; Neuville, L.; Zhu, J. Chem.;Eur. J. 2007,
13, 961–967. (b) Salcedo, A.; Neuville, L.; Rondot, C.; Retailleau, P.;
Zhu, J. Org. Lett. 2008, 10, 857–860. (c) Jaegli, S.; Vors, J.-P.; Neuville,
L.; Zhu, J. Synlett 2009, 2997–2999. (d) Jaegli, S.; Vors, J.-P.; Neuville,
L.; Zhu, J. Tetrahedron 2010, 66, 8911–8921. Reaction involving CꢀH
functionalizations: (e) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org.
Lett. 2006, 8, 4927–4930. (f) Pinto, A.; Neuville, L.; Zhu, J. Angew.
Chem., Int. Ed. 2007, 46, 3291–3295. (g) Piou, T.; Neuville, L.; Zhu, J.
Org. Lett. 2012, 14, 3760–3763. (h) Piou, T.; Neuville, L.; Zhu, J. Angew.
Chem., Int. Ed. 2012, 51, 11561–11565.
(11) (a) Pinto, A.; Neuville, L.; Zhu, J. Tetrahedron Lett. 2009, 50,
3602–3605. (b) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed.
2009, 48, 572–577. (c) Jaegli, S.; Erb, W.; Retailleau, P.; Vors, J.-P.;
Neuville, L.; Zhu, J. Chem.;Eur. J. 2010, 16, 5863–5867. (d) Jaegli, S.;
Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.; Vors, J.-P.; Neuville, L.;
Zhu, J. Org. Lett. 2010, 12, 4498–4501.
the presence of CuCl2 2H2O (20 mol %), pyridine (2 equiv),
3
and Na2CO2 (2 equiv) under oxygen (1 atm), with gentle
heating (70 °C) (Table 1, entries 1 and 2). Interestingly, we
found that the reaction furnished imidazole 4a as the major
compound and the oxidized quinazoline 7a as a minor
byproduct.
Based on this result, we undertook an optimization
study presented in Table 1.21 The following observations
weremadeduring these trials: Formationof quinazoline7a
could not be suppressed, but yields remained low whatever
the conditions (<13%). The formation of 1,4-diphenyl-
buta-1,3-diyne resulting from a GlaserꢀHay dimerization
(12) For reviews, see: (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S.
Angew. Chem., Int. Ed. 2011, 50, 11062–11087. (b) Campbell, A. N.;
Stahl, S. S. Acc. Chem. Res. 2012, 45, 851–863. (b) Shi, Z.; Zhang, C.;
Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381–3429.
(17) For reviews dealing with hydroamination, see: (a) Severin, R.;
€
Doye, S. Chem. Soc. Rev. 2007, 36, 1407–1420. (b) Muller, T. E.;
(13) For recent reviews, see: (a) Qiao, J. X.; Lam, P. Y. S. Synthesis
2011, 829–856. (b) Rao, K. S.; Wu, T.-S. Tetrahedon 2012, 68, 7735–
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,
108, 3705–3892. Cu(II) promoted cyclization: (c) Hiroya, K.; Itoh, S.;
Sakamoto, T. J. Org. Chem. 2004, 69, 1126–1136. (d) See reference 9b.
(18) For reviews, see: (a) Evano, G.; Coste, A.; Jouvin, K. Angew.
Chem., Int. Ed. 2010, 49, 2840–2859. (b) DeKorver, K. A.; Li, H.; Lohse,
A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010,
110, 5064–5106. (c) Evano, G.; Jouvin, K.; Coste, A. Synthesis 2013, 45,
17–26.
(19) (a) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130,
833–835. (b) Laouiti, A.; Rammah, M. M.; Rammah, M. B.; Marrot, J.;
Couty, F.; Evano, G. Org. Lett. 2012, 14, 6–9.
(20) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett.
2010, 12, 3963–3965.
(21) See the Supporting Information for additional data.
ꢀ
7754. Our recent contribution: (c) Benard, S.; Neuville, L.; Zhu, J.
J. Org. Chem. 2008, 73, 6441–6444. (d) Benard, S.; Neuville, L.; Zhu, J.
Chem. Commun. 2010, 46, 3393–3395.
ꢀ
(14) Li, J.; Benard, S.; Neuville, L.; Zhu, J. Org. Lett. 2012, 14, 5980–
5983.
(15) (a) Xi, N.; Huang, Q.; Liu, L. In Comprehensive Heterocyclic
Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor,
R. J. K., Eds.; Elsevier: Oxford, 2008; Vol. 5, pp 143ꢀ364. (b) Pastor, I.;
Yus, M. Curr. Chem. Biol. 2009, 3, 385–408. (c) Bellina, F.; Cauterucio,
S.; Rossi, R. Tetrahedron 2007, 63, 4571–4624 and references cited
therein.
(16) For an alternative Cu-promoted aerobic synthesis of imidazoles,
see: Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2012, 14, 6068–6071.
B
Org. Lett., Vol. XX, No. XX, XXXX