144
K.M. Ibrahim et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 107 (2013) 133–144
[13] A.I. Vogel, Quantitative Inorganic Analysis, Longmans, London, 1989.
[14] K.M. Ibrahium, T.H. Rakaha, A.M. Abdalla, M.M. Hassanian, J. Indian Chem. 32
(1993) 361–363.
[15] K.M. Ibrahim, I.M. Gabr, R.R. Zaky, J. Cood. Chem. 62 (7) (2009) 1100–1116.
[16] K.M. Ibrahim, I.M. Gabr, G.M. Abu El-Reash, R.R. Zaky, Monatsh. Fur Chem. 140
(6) (2009) 625–632.
of its positive charge with the donor groups within the chelate ring
system formed during the coordination. This process, in turn, in-
creases the lipophilic nature of the central metal atom, which fa-
vors its permeation more efficiently through the lipid layer of the
microorganism, thus destroying them more aggressively. Increased
activity of the metal chelates is due to the lipophilic nature of the
metal ion in complexes. Furthermore, the mode of action of Schiff
base compounds may involve the formation of a hydrogen bond
through the azomethine nitrogen atom with the active center of
the cell constituents, resulting in interference with normal cell pro-
cess [50–54].
[17] K. Nakamoto, Infrared Spectra of Inorganic, Coordination Compounds, Wile
Interscience, New York, 1970.
´
´
[18] K. Pyta, P. Przybylski, A. Huczynski, A. Hoser, K. Wozniak, W. Schilf, B.
Kamien´ ski, D. Eugeniusz Grech, J. Mol. Struct. 970 (2010) 147–154.
[19] R.R. Zaky, K.M. Ibrahim, I.M. Gabr, Spectrochim. Acta Part A 81 (2011) 28–34.
[20] T.H. Rakha, N. Nawar, G.M. Abu El-Reach, Synth. React. Inorg. Met.-Org. Chem.
26 (1996) 1705–1718.
[21] R.R. Zaky, Phosphorus, Sulfur, Silicon the Relat. Elem. 186 (2) (2011) 365–380.
[22] S.P. McGlynn, J.K. Smith, J. Chem. Phys. 35 (1961) 105–116.
[23] L.H. Jones, J. Opt. Soc. Am. 54 (1964) 1283–1284.
[24] R.R. Zaky, T.A. Yousef, K.M. Ibrahim, Spectrochim. Acta Part A 97 (2012) (2012)
683–694.
Conclusion
[25] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, New York,
1984.
Schiff base complexes of Co(II), Ni(II), Cu(II), Pd(II), Cd(II), Zn(II)
and U(VI)O2 with (E)-3-(2-(1-(2- hydroxyphenyl)hydrazinyl)-3-
oxo-N-(thiazol-2yl)propanamide (H2o-HAH) were prepared and
characterized. It is obvious from this study that the (H2o-HAH) be-
haves in a tridentate and/or tetradentate ligand. The electronic
spectra of the complexes as well as their magnetic moments sug-
gest octahedral geometries for all isolated complexes except Pd(II)
complex has square planner geometry. The kinetic and thermody-
[26] R.R. Zaky, A.M. Abdelghay, Res. J. Pharm., Biol. Chem. Sci. 2 (1) (2011) 757–764.
[27] P. Bindu, M.R.P. Kurup, T.R. Satyakeerty, Polyhedron 18 (1999) 321–331.
[28] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143–207.
[29] O.I. Singh, M. Damayanti, N.R. Singh, R.K.H. Singh, M. Mohapatra, R.M. Kadam,
Polyhedron 24 (2005) 909–916.
[30] J.L. Mesa, M.I. Pizarro, Cryst. Res. Technol. 33 (1998) 489–495.
[31] T.H. Rakha, K.M. Ibrahim, M.E. Khalifa, Thermochim. Acta. 144 (1989) 53–63.
[32] T.H. Rakha, M.M. Bekheit, M.M. El-Agez, Synth. React. Inorg. Met.-Org. Chem.
29 (1999) 449–472.
[33] A.W. Coats, J.P. Redfern, Nature 20 (1964) 68–69.
namic parameters (Ea, A,
DH, DS, DG) of all thermal decomposition
[34] A. Broido, J. Ploym. Sci. A-2 (7) (1969) 1761–1773.
[35] A.A. Frost, R.G. Pearson, Kinetics and Mechanisms, Wiley, New York, 1961.
[36] T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to
Polymer Science, John Wiley and Sons, Chichester, 1994.
[37] P.B. Maravalli, T.R. Goudar, Thermochima. Acta. 325 (1999) 35–41.
[38] K.K.M. Yusuff, R. Sreekala, Thermochima. Acta. 159 (1990) 357–368.
[39] S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochima. Acta. 414 (2004) 105–
113.
steps suggested the first order behavior. Also, the association free
energies evaluated for Co(II) complexes are spontaneous and small
indicating that electrostatic attraction force. Moreover, the biolog-
ical activities of the ligand and its complexes against bacterial and
fungal organisms have been evaluated by using minimum inhibi-
tory concentrations (MICs) method. The [Pd(Ho-HAH)(H2O)]ꢀH2O
was the most active against all strains.
[40] W. Grzybkowski, R. Pastewski, Electrochimic. Acta 25 (1980) 279–285.
[41] N.A. El-Shishtawi, M.A. Hamada, E.A. Gomaa, J. Chem. Eng. Data 55 (2010)
5422–5425.
[42] M.A. Hamada, N. El-Shishtawi, E.A. Gomaa, South. Braz. J. Chem. 17 (2009) 33–
40.
References
[43] J.J. Christensen, J.O. Hill, R.M. Izatt, Science 174 (1971) 459–467.
[44] A.K. Covington, T. Dickinson, Physical Chemistry of Organic Solvent System,
Plenum Press, London, 1973.
[1] C. Anitha, C.D. Sheela, P. Tharmaraj, S. Sumathi, Spectrochim. Acta. Part A 96
(2012) 493–500.
[2] L.N. Suvarapu, Y.K. Seo, S.O. Baek, V.R. Ammireddy, E-J. Chem. 9 (3) (2012)
[45] F.I. El-Dossoki, J. Mol. Liq. 142 (2008) 53–56.
1288–1304.
[46] Y. Tekeda, Bull. Chem. Soc. Jpn. 56 (1983) 3600–3602.
[47] P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolken, in: G.L. Wood,
J.A. Washington (Eds.), Manual of Clinical Microbiology, Am. Soc. Microbiol,
Washington, DC, 1995.
[48] R.N. Jones, A.L. Barry, T.L. Gavan, I.I.J.A. Washington, in: E.H. Lennette, A.
Ballows, W.J. Hausler Jr, H.J. Shadomy (Eds.), Manual of Clinical Microbiology,
fourth ed., Am. Soc. Microbiol. (1972), Washington DC, 1985.
[49] J.R. Soares, T.C.P. Dinis, A.P. Cunha, L.M. Almeida, Free Radical Res. 26 (1997)
469–478.
[50] R.B. Johari, R.C. Sharma, J. Indian Chem. Soc. 65 (1988) 793–794.
[51] Z.H. Abd El-Wahab, M.R. El-Sarrag, Spectrochim. Acta. 60A (2004) 271–277.
[52] L. Mishra, V.K. Singh, Synth. Ind. J. Chem. 32A (1993) 446–449.
[53] N. Raman, V. Muthuraj, S. Ravichandran, A. Kulandaisamy, Proc. Indian Acad.
Sci. 115 (2003) 161–167.
´
[3] J. Sławin´ ski, B. Zołnowska, C. Orlewska, J. Chojnacki, Monatsh. Chem. 143
(2012) 1705–1718.
[4] K.N. de-Oliveira, L.D. Chiaradia, P.G.A. Martins, A. Mascarello, M.N.S. Cordeiro,
R.V.C. Guido, A.D. Andricopulo, R.A. Yunes, R.J. Nunes, J. Vernal, H. Terenzi,
Med. Chem. Commun. 2 (2011) 500–504.
[5] V. Senturk, R. Stewart, A. Sagduyu, Lepr. Rev. 78 (2007) 231–242.
[6] S.L. Mukherjee, J. Naha, S. Raymahasaya, S.L. Laskar, P.R. Gupta, J. Pharm.
Pharmacol. 7 (1) (2011) 35–38.
[7] A.I. Mosa, A.A.A. Emara, J.M. Yousef, A.A. Saddiq, Spectrochim. Acta. Part A 81
(2011) 35–43.
[8] Ü.Ö. Özmen, G. Olgun, Spectrochim. Acta. Part A 70 (2009) 641–645.
[9] Y. Zang, L. Zang, L. Liu, J. Guo, D. Wu, G. Xu, X. Wang, D. Jia, Inorg. Chim. Acta
363 (2010) 289–293.
[10] M.N. Abd El-Hady, R.R. Zaky, K.M. Ibrahim, E.A. Gomaa, J. Mol. Struct. 1016
(2012) 169–180.
[11] R.R. Zaky, T.A. Yousef, J. Mol. Struct. 1002 (2011) 76–85.
[12] K.M. Ibrahim, R.R. Zaky, E.A. Gomaa, M.N. El-Hady, Res. J. Pharm., Biol. Chem.
Sci. 2 (3) (2011) 391–404.
[54] P.K. Panchal, H.M. Parekh, M.N. Patel, Toxicol. Environ. Chem. 87 (2005) 313–
320.