Organometallics
Communication
conditions. In addition to aryl alkynes, aliphatic alkynes could
also be compatible in this transformation, delivering 5h in a
66% yield. In contrast, only either 3-alkylidenephthalides or 3-
arylidenephthalides could be accessed through the previously
reported transition-metal-catalyzed C−H coupling of benzoic
acids with unsaturated components.6−8
To probe the reaction mechanism, 2,2,6,6-tetramethylpiper-
idine-N-oxyl (TEMPO) was added. Only a trace amount of the
desired product was detected in the presence of 0.5 equiv of
TEMPO, thus implying that this reaction might involve a
radical process.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, characterization data, and
X-ray crystallographic data for 3i (CIF)
AUTHOR INFORMATION
Corresponding Authors
■
While the mechanism of this reaction is still under
investigation, a tentative mechanism is proposed on the basis
of the above results and previous reports (Scheme 3).5j,k,10
Notes
Scheme 3. Proposed Mechanism
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by grants from the National NSF of
China (Nos. 21432005 and 21321061), and Comprehensive
Training Platform of Specialized Laboratory, College of
Chemistry, Sichuan University.
REFERENCES
■
(1) Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213−
6284.
(2) (a) Yoshikawa, M.; Uchida, E.; Chatani, N.; Murakami, N.;
Yamahara, J. Chem. Pharm. Bull. 1992, 40, 3121−3123. (b) Zhang, H.;
Matsuda, H.; Kumahara, A.; Ito, Y.; Nakamura, S.; Yoshikawa, M.
Bioorg. Med. Chem. Lett. 2007, 17, 4972−4976. (c) Kurume, A.;
Kamata, Y.; Yamashita, M.; Wang, Q.; Matsuda, H.; Yoshikawa, M.;
Kawasaki, I.; Ohta, S. Chem. Pharm. Bull. 2008, 56, 1264−1269.
(d) Bader, A.; De Tommasi, D.; Cotugno, R.; Braca, A. J. Nat. Prod.
2011, 74, 1421−1426. (e) Ortar, G.; Moriello, A. S.; Morera, E.; Nalli,
M.; Marzo, V. D.; Petrocellis, L. D. Bioorg. Med. Chem. Lett. 2013, 23,
5614−5618. (f) Matsuda, Y.; Wakimoto, T.; Mori, T.; Awakawa, T.;
Abe, I. J. Am. Chem. Soc. 2014, 136, 15326−15336.
(3) (a) Ko, W.-C. Jpn. J. Pharmacol. 1980, 30, 85−91. (b) Bedoya, L.
M.; del Olmo, E.; Sancho, R.; Barboza, B.; Beltran
́
, M.; García-
Cadenas, A. E.; San
Feliciano, A. S.; Alcamí, J. Bioorg. Med. Chem. Lett. 2006, 16, 4075−
4079. (c) Brindis, F.; Rodríguez, R.; Bye, R.; Gonzalez-Andrade, M.;
Mata, R. J. Nat. Prod. 2011, 74, 314−320.
(4) Satoh, T.; Miura, M. Synthesis 2010, 2010, 3395−3409.
(5) (a) Lacova, M.; Chovancova, J.; Veverkova, E.; Toma, S.
́
chez-Palomino, S.; Lopez-Perez, J. L.; Munoz, E.;
́
́
̃
Initially, the coordination of the carboxylate oxygen atom of 1
to the electrophilic Rh(III) center and subsequent ortho C−H
rhodation afford the rhodacycle A. A subsequent reaction with
the in situ formed alkyne radical leads to the Rh(IV) complex
B, which then undergoes reductive elimination to give the
alkynylated product C.11 A subsequent metal-catalyzed
cyclization gives the desired product 3 or 5. The released
Rh(II) species is oxidized by silver(I) to regenerate the Rh(III)
species to accomplish the catalytic cycle.
In summary, we have developed a facile and efficient route to
3-ylidenephthalides through a rhodium-catalyzed oxidative
coupling/annulation of benzoic acids with terminal alkynes.
This protocol features relatively broad substrate scope, mild
conditions, operational simplicity, good regioselectivity, and
excellent Z selectivity. Considering the wide applications of 3-
ylidenephthalides in pharmaceuticals, our strategy would
provide a great opportunity for rapid construction and
evaluation of diverse 3-ylidenephthalides of potential pharma-
cological interest. Further investigation of the reaction
mechanism is ongoing in our laboratory.
́
̌
́
́
́
́
Tetrahedron 1996, 52, 14995−15006. (b) Safari, J.; Naeimi, H.;
Khakpour, A. A.; Jondani, R. S.; Khalili, S. D. J. Mol. Catal. A: Chem.
2007, 270, 236−240. (c) Chopard, P. A.; Hudson, R. P.; Searle, R. J.
G. Tetrahedron Lett. 1965, 6, 2357−2360. (d) Lee, K. Y.; Kim, J. M.;
Kim, J. N. Synlett 2003, 0357−0360. (e) Shapiro, S. L.; Geiger, K.;
Freedman, L. J. Org. Chem. 1960, 25, 1860−1865. (f) Zimmer, H.;
Barry, R. D. J. Org. Chem. 1962, 27, 3710−3711. (g) Ciattini, P. G.;
Mastropietro, G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1993, 34,
3763−3766. (h) Negishi, E.-i; Coper
I.; Zhang, Y.; Wu, G.; Tour, J. M. Tetrahedron 1994, 50, 425−436.
(i) Campora, J.; Maya, C. M.; Palma, P.; Carmona, E.; Gutierrez-
́
et, C.; Sugihara, T.; Shimoyama,
́
́
Puebla, E.; Ruiz, C. J. Am. Chem. Soc. 2003, 125, 1482−1483.
(j) Rambabu, D.; Kumar, G. P.; Kumar, B. D.; Kapavarapu, R.; Rao, M.
V. B.; Pal, M. Tetrahedron Lett. 2013, 54, 2989−2995. (k) Dhara, S.;
Singha, R.; Ghosh, M.; Ahmed, A.; Nuree, Y.; Das, A.; Ray, J. K. RSC
Adv. 2014, 4, 42604−42607. (l) Larock, R. C.; Hightower, T. R. J. Org.
Chem. 1993, 58, 5298−5300.
(6) (a) Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 11212−11222.
(b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215−1292.
(c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.
2012, 51, 8960−9009. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev.
C
Organometallics XXXX, XXX, XXX−XXX