Communication
Organic & Biomolecular Chemistry
Table 2 Synthesis of pyrrolo[1,2-b]pyridazinesa
pyrrolo[1,2-b]pyridazine derivatives with biological activity are
currently in progress in our laboratory.
Acknowledgements
This work was financially supported by the Ministry of Science
and Technology of China (“Key New Drug Creation and Manu-
facturing Program” 2012ZX09301001-001, 2012ZX09103101-
071), the Chinese Academy of Sciences (“Interdisciplinary
Cooperation Team” Program for Science and Technology Inno-
vation), the National Natural Science Foundation of China
(NSFC) (grant number 21072205), and SKLDR/SIMM
(SIMM1203ZZ-0103).
Notes and references
1 For selected reviews on pyrrolo[1,2-b]pyridazines, see:
(a) D. E. Kuhla and J. O. Lombardino, Adv. Heterocycl.
Chem., 1977, 21, 1; (b) G. Jones, in Comprehensive Hetero-
cyclic Chemistry II, ed. Editors-in-Chief: A. R. Katritzky,
C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996,
Vol. 8, p. 287; (c) F. Dumitraşcu and D. G. Dumitrescu,
ARKIVOC, 2008, 2008, 232; (d) I. I. Mangalagiu, Curr. Org.
Chem., 2011, 15, 730.
2 For some selected recent examples on therapeutic useful-
ness of pyrrolo[1,2-b]pyridazines, see: (a) Z. Chen,
S. H. Kim, S. A. Barbosa, T. Huynh, D. R. Tortolani,
K. J. Leavitt, D. D. Wei, V. Manne, C. S. Ricca and J. Gullo-
Brown, Bioorg. Med. Chem. Lett., 2006, 16, 628;
(b) R. M. Butnariu and I. I. Mangalagiu, Bioorg. Med.
Chem., 2009, 17, 2823; (c) B. M. Fox, K. Iio, K. Li, R. Choi,
T. Inaba, S. Jackson, S. Sagawa, B. Shan, M. Tanaka and
A. Yoshida, Bioorg. Med. Chem. Lett., 2010, 20, 6030;
(d) I. Dorange, R. Forsblom, I. Macsari, M. Svensson,
J. Bylund, Y. Besidski, J. Blid, D. Sohn and Y. Gravenfors,
Bioorg. Med. Chem. Lett., 2012, 22, 6888; (e) J. G. Kettle,
S. Brown, C. Crafter, B. R. Davies, P. Dudley, G. Fairley,
P. Faulder, S. Fillery, H. Greenwood and J. Hawkins, J. Med.
Chem., 2012, 55, 1261; (f) T. Saito, T. Obitsu, H. Kohno,
I. Sugimoto, T. Matsushita, T. Nishiyama, T. Hirota,
H. Takeda, N. Matsumura, S. Ueno, A. Kishi, Y. Kagamiishi,
H. Nakai and Y. Takaoka, Bioorg. Med. Chem., 2012, 20,
1122.
a Reaction conditions: methyl 1-amino-5-bromo-pyrrole-2-carboxylate 1
(0.4 mmol), propargyl alcohols (0.8 mmol), DBU (2.0 mmol), 2 mol%
Pd(PPh3)4, 1 mol% CuI, 2 mL of dry toluene heating in a microwave
reactor under N2 at 100 °C. Yield isolated by column chromatography.
b The reaction was refluxed in an oil bath for 36 hours.
3 For some selected examples on optical and electrochemical
properties of pyrrolo[1,2-b]pyridazines, see: (a) Y. Cheng,
B. Ma and F. Wudl, J. Mater. Chem., 1999, 9, 2183;
(b) T. Mitsumori, M. Bendikov, J. Sedó and F. Wudl, Chem.
Mater., 2003, 15, 3759; (c) T. Mitsumori, I. M. Craig,
I. B. Martini, B. J. Schwartz and F. Wudl, Macromolecules,
2005, 38, 4698; (d) K. Swamy, M. S. Park, S. J. Han,
S. K. Kim, J. H. Kim, C. Lee, H. Bang, Y. Kim, S. J. Kim and
J. Yoon, Tetrahedron, 2005, 61, 10227; (e) G. N. Zbancioc
and I. I. Mangalagiu, Synlett, 2006, 804; (f) M. Vasilescu,
R. Bandula, O. Cramariuc, T. Hukka, H. Lemmetyinen,
pyridazines has been developed. This rapid synthesis paved
the way to construct a diversified pyrrolo[1,2-b]pyridazine
library under mild conditions. This cascade process involves a
Sonogashira coupling reaction, an isomerization to chalcones
and finally an intramolecular condensation. The starting
material, (hetero)aryl propargyl alcohols, can be easily gener-
ated by simple addition of ethynylmagnesium bromide to alde-
hydes. Operational simplicity and high atom economy of this
process should be beneficial for its applications. Further
studies expanding the synthetic scope and the screening for
2576 | Org. Biomol. Chem., 2013, 11, 2574–2577
This journal is © The Royal Society of Chemistry 2013