2356
M. S. Majik et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2353–2356
Science of Synthesis and Its Impact on Society; Wiley: New York, 2008; (c)
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
age percentage of 83% was observed at a concentration of 1.8 mM
and above. In comparison with salicylic acid,24 a well known bio-
film inhibitor, our synthesized compound 12 showed two times
better biofilm inhibition i.e. norbgugaine showed decrease in bio-
film formation by 83% while salicylic acid reduced by 48% at
4 mM. Additionally, as P. aeruginosa growth was not inhibited by
the pyrrolidine derivative 12 (Fig. 4A), it is possible to conclude
that the inhibition on virulence factor production is caused by an
anti-QS mode of action.
2. (a) Huang, X.; Shao, N.; Huryk, R.; Palani, A.; Aslanian, R.; Seidel-Dugan, C. Org.
Lett. 2009, 11, 867; (b) Sunami, S.; Nishimura, T.; Nishimura, I.; Ito, S.; Arakawa,
H.; Ohkubo, M. J. Med. Chem. 2009, 52, 3225; (c) Evans, B. E.; Rittle, K. E.; Bock,
M. G.; Dipardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D.
F.; Anderson, P. S.; Chang, R. S.; Lotti, L. V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.;
Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235.
3. (a) Hu, L.; Zhang, L.; Zhai, H. J. Org. Chem. 2009, 74, 7552; Schneider, M. In
Alkaloids: Chemical and Biochemical Perspectives; Pelletier, S. W., Ed.; Elsevier
Science: Oxford, 1996; Vol. 10, p 155; (c) Michael, J. P. Nat. Prod. Rep. 1999, 16,
675; (d) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556; (e)
Kubanek, J.; Williams, D. E.; DilipdeSilva, E.; Allen, T.; Andersen, R. J.
Tetrahedron Lett. 1995, 36, 6189.
4. Melhaoui, A.; Mallea, M.; Jossang, A.; Bodo, B. Nat. Prod. Lett. 1993, 2, 237.
5. (a) Schwartz, R. E.; Liesch, J.; Hensens, O.; Zitano, L.; Honeycutt, S.; Garrity, G.;
Fromtling, R. A.; Onishi, J.; Monaghan, R. J. Antibiot. 1988, 41, 1774; (b) Johnson,
J. H.; Phillipson, D. W.; Kahle, A. D. J. Antibiot. 1989, 42, 1184.
6. (a) Royer, J. Asymmetric Synthesis of Nitrogen Heterocycles; Wiley: Weinheim,
2009; (b) Kuroda, I.; Musman, M.; Ohtani, I.; Ichiba, T.; Tanaka, J.; Garcia-
Gravalos, D.; Higa, T. J. Nat. Prod. 2002, 65, 1505; (c) Comins, D. L.; Sandelier, M.
J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829.
7. (a) Wijdeven, M. A.; Willemsen, J.; Rutjes, F. P. J. T. Eur. J. Org. Chem. 2010, 2831;
(b) Buffat, M. G. P. Tetrahedron 2004, 60, 1701; (c) Toyooka, N.; Nemoto, H.
Drugs Future 2002, 27, 143; (d) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000,
56, 9843; (e) Laschat, S.; Dickner, T. Synthesis 2000, 1781; (f) Comins, D. L.;
Joseph, S. P. Adv. Nitrogen Heterocycl. 1996, 2, 251.
8. (a) Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P. Nat. Rev. Microbiol. 2004, 2,
95; (b) Pillai, S. K.; Sakoulas, G.; Eliopoulos, G. M.; Moellering, R. C., Jr.; Murray,
B. E.; Inouye, R. T. J. Infect. Dis. 2004, 190, 967; (c) Davies, D. Nat. Rev. Drug Disc.
2003, 2, 114.
9. Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Science 1999, 284, 1318.
10. (a) Tello, E.; Castellanos, L.; Duque, C. Bioorg. Med. Chem. 2013, 21, 242; (b)
Musk, D. J.; Hergenrother, P. J., Jr. Curr. Med. Chem. 2006, 13, 2163.
11. Hentzer, M.; Riedel, K.; Rasmussen, T. B.; Heydorn, A.; Andersen, J. B.; Parsek,
M. R.; Rice, S. A.; Eberl, L.; Molin, S.; Hoiby, N.; Kjelleberg, S.; Givskov, M.
Microbiology 2002, 148, 87.
12. (a) Dobretsov, S.; Teplitski, M.; Paul, V. Biofouling 2009, 25, 413; (b) Choudhary,
S.; Schmidt-Dannert, C. Appl. Microbiol. Biotechnol. 2010, 86, 1267; (c) Qian, P.
Y.; Xu, Y.; Fusetani, N. Biofouling 2010, 26, 223; (d) Dobretsov, S.; Teplitski, M.;
Bayer, M.; Gunasekera, S.; Proksch, P.; Paul, V. J. Biofouling 2011, 27, 893.
13. Geske, G. D.; O’Neill, J. C.; Blackwell, H. E. Chem. Soc. Rev. 2008, 37, 1432.
14. Geske, G. D.; Wezeman, R. J.; Siegel, A. P.; Blackwell, H. E. J. Am. Chem. Soc. 2005,
127, 12762.
In summary, a concise and simple synthesis of (R)-norbgugaine
has been achieved for the first time using L-proline through Wittig
reaction as a crucial step. Furthermore, purification by column
chromatography was required in only one step, which makes an
efficient route to this alkaloid. The majority of infectious diseases
are associated with the formation of biofilms. In this study, we
found that norbgugaine, inhibits various motilities, pyocyanin pig-
mentation, LasA protease rhamnolipid production, and biofilm for-
mation in Pseudomonas aeruginosa. Swimming repression suggests
that norbguganine affects the flagella related functions, which
might lead to swarming inhibition. Rhamnolipids are known to
modulate swarming motility in P. aeruginosa25 and repression of
rhamnolipid formation affects colony wetness which may be the
reason for almost the complete inhibition of swarming motility ob-
served in the present case. Biofilm formation and swarming motil-
ity have been shown to be closely connected and regulated by a
large set of overlapping genes. Moreover, swarming motility has
been shown to be important for the early stages of biofilm forma-
tion. Therefore, it can be expected that the biofilm repression in the
presence of norbgugaine may be mediated by a mechanism similar
to that for swarming inhibition. Efforts are on in our laboratory to
identify the exact mode of action of norbgugaine in P. aeruginosa
and give the role QS plays in P. aeruginosa virulence. Thus, norbg-
ugaine has immense potential to act as a next generation therapeu-
tic agent.
15. (a) Frei, R.; Breitbach, A. S.; Blackwell, H. E. Angew. Chem., Int. Ed. 2012, 51,
5226; (b) Breitbach, A. S.; Broderick, A. H.; Jewell, C. M.; Gunasekaran, S.; Lin,
Q.; Lynn, D. M.; Blackwell, H. E. Chem. Commun. 2011, 47, 370; (c) Palmer, A. G.;
Streng, E.; Blackwell, H. E. ACS Chem. Biol. 2011, 6, 1348.
Acknowledgments
16. Horikawa, M.; Tateda, K.; Tuzuki, E.; Ishii, Y.; Ueda, C.; Takabatake, T.; Miyairi,
S.; Yamaguchi, K.; Ishiguro, M. Bioorg. Med. Chem. Lett. 2006, 16, 2130.
17. Worthington, R.; Richards, J. J.; Melander, C. Org. Biomol. Chem. 2012, 10, 7457.
18. (a) Majik, M. S.; Tilve, S. G. Tetrahedron Lett. 2010, 51, 2900; (b) Majik, M. S.;
Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 6378; (c) Majik, M. S.;
Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 3591; (d) Majik, M. S.;
Parameswaran, P. S.; Tilve, S. G. Helv. Chim. Acta 2008, 91, 1500.
19. Majik, M. S.; Parameswaran, P. S.; Tilve, S. G. J. Chem. Res. 2008, 121.
20. Lee, E.; Li, K.-S.; Lim, J. Tetrahedron Lett. 1996, 37, 1445.
21. Miller, M. B.; Bassler, B. L. Annu. Rev. Microbiol. 2001, 55, 165.
22. Gonza´lez, J. E.; Keshavan, N. D. Microbiol. Mol. Biol. Rev. 2006, 70, 859.
23. See Supplementary data for detail procedure.
The authors thank the Director, CSIR-National Institute of
Oceanography for constant encouragement. Financial assistance
provided by the Ocean Finder Grant No. OLP 1201 is highly
acknowledged. Author (M.S.M.) is grateful to CSIR–NIO for the
award of Scientist Fellow-QHS.
Supplementary data
Supplementary data associated with this article can be found, in
24. Chow, S.; Gu, K.; Jiang, L.; Nassour, A. J. Exp. Microbiol. Immunol. 2011, 15, 22.
25. Caiazza, N. C.; Shanks, R. M. Q.; O’Toole, G. A. J. Bacteriol. 2005, 187, 7351.
References and notes
1. (a) Danishefsky, S. Nat. Prod. Rep. 2010, 27, 1114; (b) Nicolaou, K. C.;
Montagnon, T. Molecules That Changed the World: A Brief History of the Art and