8
ESFANDIARY ET AL.
Following the successful pyrazole synthesis, the reaction
νmax, cm−1): 3149, 3126, 3024, 2954, 1743, 1571, 1492,
1278, 1142. 1H NMR (500 MHz, CDCl3, δ, ppm): 8.56
(m, J = 7.1 Hz, 2H), 8.04 (b, 2H), 7.51 (ddd, J = 6.8 Hz,
2H), 7.22–7.33 (t, J = 8 Hz, 2H), 7.10–7.16 (m, J = 6.5 Hz,
2H), 6.93–7.16 (t, J = 7.6 Hz, 1H).
3‐Amino‐1‐(thiophen‐2‐yl)‐1H–benzo[f]chromene‐2‐
carbonitrile (Table 4, entry 5). FT‐IR (KBr, νmax, cm−1):
3442, 3344, 2178, 1640, 1588. 1H NMR (500 MHz, CDCl3,
δ, ppm): 5.70 (s, 1H, CH), 6.87 (dd, 1H, J = 4.8, 3.4 Hz),
7.01 (d, 1H, J = 3.3 Hz), 7.10 (s, 2H), 7.24–7.31 (m, 2H),
7.42–7.53 (m, 2H), 7.93(d, 2H, J = 8.7 Hz), 8.03 (d, 1H,
J = 8.2 Hz).
of benzaldehyde, malononitrile and β‐naphthol was found to
be facilitated, leading to the desired product in high yield
(Scheme 5). The optimal reaction conditions are found to
be arylaldehyde (1 mmol), malononitrile (1 mmol) and
β‐naphthol (1 mmol) at room temperature for 1 h under ultra-
sonic irradiation in water (Table 3, entry 9). Under these opti-
mized conditions, various aldehydes were used as substrates
for the formation of corresponding chromenes (Table 4).
The reaction mechanism consists of three steps. The first
step is Knoevenagel condensation, the same as in the
pyrazole synthesis reaction. The next step is Michael addition
of β‐naphthol to the Knoevenagel product. Finally the
chromene product is formed by intermolecular cyclization
(Scheme 6).
ACKNOWLEDGMENTS
We are grateful to Tarbiat Modares University for financial
support of this work.
4
| CONCLUSIONS
REFERENCES
[1] a) P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301. b) P. T. Anastas, T.
C. Williamson (Eds), Green Chemistry: Frontiers in Benign Chemical Syn-
theses and Processes, Oxford University Press, New York 1998.
In summary, we synthesized green benign superparamagnetic
nanoparticles coated with glucose and characterized their var-
ious properties with FT‐IR spectroscopy, XRD, TGA, SEM
and VSM techniques. Then, we used these recyclable
nanoparticles to catalyse the synthesis of pyrazole and
chromene derivatives in water at room temperature under
ultrasonic irradiation, as a green and environmentally friendly
process.
[2] a) M. T. Gailliot, R. F. Baumeister, C. N. DeWall, J. K. Maner, E. A. Plant, D.
M. Tice, L. E. Brewer, B. J. Schmeichel, J. Pers. Soc. Psychol. 2007, 92, 325.
b) M. T. Gailliot, R. F. Baumeister, Pers. Soc. Psychol. Rev. 2007, 11, 303.
[3] A. M. Faisca Phillips, Eur. J. Org. Chem. 2014, 2014, 7291.
[4] a) T. Bakó, P. Bakó, G. Keglevich, P. Bombicz, M. Kubinyi, K. Pál, S.
Bodor, A. Makó, L. Tőke, Tetrahedron Asymm. 2004, 15, 1589. b) T. K.
Shing, G. Y. Leung, Tetrahedron 2002, 58, 7545.
[5] a) L. Wang, J. Liu, T. Miao, W. Zhou, P. Li, K. Ren, X. Zhang, Adv. Synth.
Catal. 2010, 352, 2571. b) Q. Gu, X.‐T. Guo, X.‐Y. Wu, Tetrahedron 2009,
65, 5265.
5
| SPECTRAL DATA FOR SELECTED
COMPOUNDS
[6] a) S. Rostamizadeh, R. Aryan, H. R. Ghaieni, Synth. Commun. 2011, 41,
1794. b) I. Yavari, E. Karimi, H. Djahaniani, Synth. Commun. 2007, 37,
2593.
5‐Amino‐1,3‐diphenyl‐1H‐pyrazole‐4‐carbonitrile. White
solid; m.p. 155–158°C. FT‐IR (KBr, νmax, cm−1): 3440,
3311, 3028, 2261, 1595, 1444, 1258, 1134, 1065. H NMR
(500 MHz, CDCl3, δ, ppm): 7.74 (s, 1H), 7.65–7.69
(d, J = 8.57 Hz, 2H), 7.37–7.40 (t, J = 7.71 Hz, 2H), 7.31–
7.33 (d, J = 6.57 Hz, 1H), 7.28–7.30 (t, J = 9.00 Hz, 2H),
7.14–7.15 (d, J = 7.71 Hz, 2H), 6.88–6.91(t, J = 8.28 Hz,
1H).
[7] D. Barbaro, L. Di Bari, V. Gandin, C. Evangelisti, G. Vitulli, E. Schiavi, C.
1
Marzano, A. M. Ferretti, P. Salvadori, PLoS One 2015, 10, e0123159.
[8] G. Wang, X. Su, Analyst (Cambridge, U. K.) 2011, 136, 1783.
[9] Y. W. Jun, J. S. Choi, J. Cheon, Chem. Commun. 2007, 1203.
[10] a) V. Clavijo‐Jordan, V. D. Kodibagkar, S. C. Beeman, B. D. Hann, K. M.
Bennett, Wiley Interdiscip, Rev. Nanomed. Nanobiotechnol. 2012, 4,
345. b) S. C. McBain, H. H. Yiu, J. Dobson, Int. J. Nanomedicine
2008, 3, 169.
5‐Amino‐3‐(4‐hydroxyphenyl)‐1‐phenyl‐1H‐pyrazole‐
4‐carbonitrile. Cream solid; m.p. 177–178°C. FT‐IR (KBr,
νmax, cm−1): 3416, 3295, 3042, 2273, 1599, 1503, 1441,
1254, 1128. 1H NMR (500 MHz, CDCl3, δ, ppm): 7.65
(s, 1H), 7.56–7.57 (d, J = 10.20 Hz, 2H), 7.29 (b, 1H),
7.26–7.28 (t, J = 4.61 Hz, 2H), 7.09–7.11 (d, J = 9.09 Hz,
2H), 6.88 (b,1H), 6.83–6.87 (t, J = 7.96 Hz, 2H), 4.89 (b, 1H).
5‐Amino‐3‐(4‐cyanophenyl)‐1‐phenyl‐1H‐pyrazole‐4‐
carbonitrile. Yellow solid; m.p. 157–158°C. FT‐IR (KBr,
νmax, cm−1): 3431, 3278, 3052, 2369, 1578, 1495, 1260,
[11] a) D. Wang, D. Astruc, Chem. Rev. 2014, 114, 6949. b) V. Polshettiwar, R.
Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset, Chem. Rev. 2011,
111, 3036.
[12] a) A. Parekh, Use of Magnetic Nanoparticles for Wastewater Treatment,
Massachusetts Institute of Technology, Cambridge, MA 2013. b) D. K.
Tiwari, J. Behari, P. Sen, World Appl. Sci. J. 2008, 3, 417. c) C. Bagheri,
A. Afkhami, A. Noroozi, Anal. Bioanal. Chem. Res. 2016, 3, 1.
[13] a) S. Manfredini, R. Bazzanini, P. Baraldi, M. Bonora, M. Marangoni, D.
Simoni, A. Pani, F. Scintu, E. Pinna, L. Pisano, Anti‐Cancer Drug Des.
1996, 11, 193. b) A. A. Bekhit, H. T. Fahmy, S. A. Rostom, A. M. Baraka,
Eur. J. Med. Chem. 2003, 38, 27.
[14] a) W. A. Herrmann, R. M. Kratzer, H. Ding, W. R. Thiel, H. Glas,
J. Organometal. Chem. 1998, 555, 293. b) S. Chandrasekhar, T. P. Kumar,
K. Haribabu, C. R. Reddy, C. R. Kumar, Tetrahedron Asymm. 2011,
22, 697.
1
1156, 1106, 1072. H NMR (500 MHz, CDCl3, δ, ppm):
7.72–7.74 (d, J = 7.9 Hz, 2H), 7.63–7.66 (t, J = 6.58 Hz,
3H), 7.30–7.33 (t, J = 7.37 Hz, 2H), 7.14–7.15 (d, J = 8.15 Hz,
2H), 6.93–6.96 (t, J = 7.89 Hz, 1H).
5‐Amino‐3‐(2‐pyridyl)‐1‐phenyl‐1H‐pyrazole‐4‐carbo-
nitrile). Yellow‐brown solid; m.p. 176–179°C. FT‐IR (KBr,
[15] a) T. F. S. Silva, L. M. D. R. S. Martins, M. F. C. Guedes da Silva, M. L.
Kuznetsov, A. R. Fernandes, A. Silva, C. J. Pan, J. F. Lee, B. J. Hwang, A.
J. L. Pombeiro, Chem. – Asian J. 2014, 9, 1132. b) W. Jin, L. Wang, Z.
Yu, Organometallics 2012, 31, 5664.