2394
B. A. Shairgojray et al. / Tetrahedron Letters 54 (2013) 2391–2394
Commun. 2001, 2030; (f) McCauley, J. A.; Nagasawa, K.; Lander, P. A.;
Mischke, S. G.; Semones, M. A.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 7647.
4. (a) Luna-Freire, K. R.; Tormena, C. F.; Coelho, F. Synlett 2011, 2059; (b) Albrecht,
A.; Albrecht, L.; Janecki, T. Eur. J. Org. Chem. 2011, 2746; (c) Zhong, W.; Liu, Y.;
Wang, G.; Hong, L.; Chen, Y.; Chen, X.; Zheng, Y.; Zhang, W.; Ma, W.; Shen, Y.;
Yang, Y. Org. Prep. Proced. Int. 2011, 43, 1; (d) Gowrisankar, S.; Lee, H. S.; Kim, S.
H.; Lee, Y. K. J.; Kim, N. Tetrahedron 2009, 43, 8769.
5. (a) Amarante, G. W.; Cavallaro, M.; Coelho, F. Tetrahedron Lett. 2010, 51, 2597;
(b) Amarante, G. W.; Rezende, P.; Cavallaro, M.; Coelho, F. Tetrahedron Lett.
2008, 49, 3744; (c) Kohn, L. K.; Pavam, C. H.; Veronese, D.; Coelho, F.; Carvalho,
J. E.; Almeida, W. P. Eur. J. Med. Chem. 2006, 41, 738; (d) Silveira, G. P. D.; Coelho,
F. Tetrahedron Lett. 2005, 46, 6477.
stability of the enolate intermediate in the conjugate addition step
of the reaction which is also supported by the fact that the
reactions are much faster in cationic micellar aggregates than in
anionic media.
In the case of cyclic enones, since the reaction works better
when DMAP is used as the base, we synthesized the MBH adducts
of 11a, 11b and 11c under the established conditions using 4 and 5.
We were delighted to observe that the reactions work smoothly in
all the three enones with various aldehydes (Table 4). It is to be
noted that the MBH adduct, 12j, derived from 11c and 8i was a
pain in the neck in our earlier efforts.16c We were delighted to ob-
tain this adduct 12j, in just 4.0 and 2.8 h (yield, 90%) using 4 and 5,
respectively, compared to the reaction without micellar media in
36 h (yield, 20–30%). Besides, the protocol also works equally good
for aromatic aldehydes having electron donating or electron with-
drawing group/s attached.
In summary, we have developed an efficient and accelerated
MBH reaction system in an aqueous cationic micellar media for
acyclic conjugated alkenes and cyclic enones using 4 and 5. The
present method is a general strategy that holds promise for future
use of MBH-adducts in total synthesis of natural products in an
expeditious and green fashion. Efforts are also underway to inves-
tigate the detailed mechanism of this acceleration and to develop
an enantio-selective variant of the reaction in a chiral micellar
media.
6. (a) Luo, S.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555; (b) You, J.; Xu, J.;
Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5054; (c) Gatri, R.; El Gaied, M. M.
Tetrahedron Lett. 2002, 43, 7835.
7. (a) Shi, M.; Zhao, G. L. Tetrahedron 2004, 60, 2083; (b) Maher, D. J.; Connon, S. J.
Tetrahedron Lett. 2004, 45, 1301; (c) Chandrasekhar, S.; Narsihmulu, C.; Saritha,
B.; Sultana, S. S. Tetrahedron Lett. 2004, 45, 5865; (d) Patra, A.; Roy, A. K.; Joshi,
B. S.; Roy, R.; Batra, S.; Bhaduri, A. P. Tetrahedron 2003, 59, 663.
8. (a) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett.
2004, 45, 5589; (b) Rezgui, F.; E1 Gaïed, M. M. Tetrahedron Lett. 1998, 39, 5965.
9. (a) Luo, S.; Zhang, B.; He, J.; Janczuk, A.; Wang, P. G.; Cheng, J. Tetrahedron Lett.
2002, 43, 7369; (b) Gatri, R.; E1 Gaïed, M. M. Tetrahedron Lett. 2002, 43, 7835.
10. (a) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D.; Mignini, E.; Palmieri, A.
Tetrahedron 2004, 60, 4995; (b) Aggarwal, V. K.; Mereu, A. Chem. Commun.
1999, 2311.
11. (a) Kinoshita, H.; Kinoshita, S.; Munechika, Y.; Iwamura, T.; Watanabe, S.;
Kataoka, T. Eur. J. Org. Chem. 2003, 4852; (b) Kinoshita, H.; Osamura, T.;
Kinoshita, S.; Iwamura, T.; Watanabe, S.; Kataoka, T.; Tanabe, G.; Muraoka, O. J.
Org. Chem. 2003, 68, 7532; (c) Pei, W.; Wei, H.; Li, G. Chem. Commun. 2002,
1856.
12. Hayashi, Y.; Okado, K.; Ashimine, I.; Shoji, M. Tetrahedron Lett. 2002, 43, 8683.
13. Kundu, M. K.; Mukherjee, S. B.; Balu, N.; Padmakumar, R.; Bhat, S. V. Synlett
1994, 444.
14. (a) Gomes, J. C.; Rodrigues, M. T., Jr.; Moyano, A.; Coelho, F. Eur. J. Org. Chem.
2012, 6861; (b) Pawar, B.; Padalkar, V.; Phatangare, K.; Nirmalkar, S.; Chaskar,
A. Catal. Sci. Technol. 2011, 1, 1641.
15. (a) Shi, M.; Liu, Y. H. Org. Biomol. Chem. 2006, 4, 1468; (b) Yamada, Y. M. A.;
Ikegami, S. Tetrahedron Lett. 2000, 41, 2165.
16. (a) Mehta, G.; Bhat, B. A.; Kumara, T. H. S. Tetrahedron Lett. 2010, 51, 4069; (b)
Mehta, G.; Bhat, B. A. Tetrahedron Lett. 2009, 50, 2474; (c) Mehta, G.; Bhat, B. A.;
Kumara, T. H. S. Tetrahedron Lett. 2009, 50, 6597.
Acknowledgments
We highly acknowledge Dr. Ram Vishwakarma, Director, Indian
Institute of Integrative Medicine-Jammu for his encouragement
and support in establishing a synthetic chemistry laboratory in Sri-
nagar campus of IIIM. One of the authors, B.A.S. acknowledges UGC
for the financial support through junior research fellowship.
17. Das, D.; Roy, S.; Das, P. K. Org. Lett. 2004, 6, 2133.
18. In a typical reaction procedure, a mixture of 11c (110 mg, 1.0 mmol) and
aqueous 37% solution 8i (2.0 mmol) was added to an aqueous solution of 4 (at
or above CMC; 2 mL). To this mixture, DMAP (12.2 mg, 0.1 mmol) was added
and the reaction was stirred at ambient temperature till its completion,
monitored by TLC. The crude reaction mixture was diluted with water and
extracted with ethylacetate to yield the pure MBH adduct. Spectral data of
representative compounds; compound 12j: IR: 3433, 3056, 1653, 1263,
References and notes
1. For reviews, see: (a) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511; (b)
Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811; (c) Langer,
P. Angew. Chem., Int. Ed. 2000, 39, 3049; (d) Ciganek, E. Org. React. 1997, 51, 201;
(e) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001.
2. (a) Hillman, M. E. D.; Baylis, A. B. U.S. Patent 3,743,669, 1973.; (b) Morita, K.;
Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
3. (a) Reddy, Y. S.; Kadigachalam, P.; Basak, R. K.; Pal, A. P. J.; Vankar, Y. D.
Tetrahedron Lett. 2012, 53, 132; (b) Paioti, P. H. S.; Coelho, F. Tetrahedron Lett.
2011, 52, 6180; (c) Kumar, V.; Das, P.; Ghosal, P.; Shaw, A. K. Tetrahedron 2011,
67, 4539; (d) Reddy, R. L.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc. 2004, 126,
6230; (e) Iwabuchi, Y.; Furukawa, M.; Esumi, T.; Hatakeyama, S. Chem.
742 cmÀ1 1H NMR (CDCl3, 400 MHz): d 1.80 (m, 4H), 2.47 (q, 2H, J = 8.0 Hz),
;
2.63 (m, 2H), 2.90 (br s, –OH), 4.23 (s, 2H), 6.77 (t, 1H, J = 8.0 Hz); 13C NMR
(100 MHz): d 21.4, 25.2, 27.9, 43.0, 64.8, 141.7, 144.9, 205.6; ESI-MS, 163.18
[M+Na]; compound 10e: IR: 3054, 2306, 1527, 1266, 741 cmÀ1 1H NMR
;
(CDCl3, 400 MHz): d 3.31 (br s, ÀOH); 6.03 (s, 1H), 6.13 (s, 1H), 6.16 (s, 1H);
7.57 (t, 1H, J = 7.5 Hz), 7.75 (t, 1H, J = 7.5 Hz), 7.86 (d, 1H, J = 7.6 Hz), 8.05 (d,
1H, J = 7.6 Hz); 13C NMR (100 MHz): d 67.5, 114.6, 122.6, 123.5, 127.5, 128.2,
130.6, 132.6, 146.1, 151.7; ESI-MS, 227.06 [M+Na].