2220
B. Du et al. / Tetrahedron Letters 54 (2013) 2217–2220
Li
Acknowledgments
O-Li+
O
S
We appreciate the financial support from NSFC (21021001,
excess LTMP
S-Li+
21172154, J1103315), National Basic Research Program of China
(973 program, 2010CB833200) and Sichuan University
(2011SCU04B33).
C5H11
C5H11
Supplementary data
LTMP
O
TBDPSCl
Supplementary data (characterization data for new compounds)
associated with this article can be found, in the online version, at
O
OSiPh2tBu
S
(1) LTMP (5.0 equiv.)
THF, 0 oC
SSiPh2tBu
(2) TBDPSCl
(5.0 equiv.)
References and notes
C5H11
C5H11
C5H11
1. (a) Ballini, R.; Bosica, G.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G. Synthesis
2001, 12, 1826–1829; (b) Shirini, F.; Sadeghzadeh, P.; Abedini, M. Chin. Chem.
Lett. 2009, 20, 1457–1460; (c) Chavan, S. P.; Soni, P.; Kamat, S. K. Synlett 2001,
1251–1252; (d) Mondal, E.; Sahu, P. R.; Bose, G.; Khan, A. T. Tetrahedron Lett.
2002, 43, 2843–2846; (e) Ravindranathan, T.; Chavan, S. P.; Varghese, J. P.;
Dantale, S. W.; Tejwani, R. B. J. Chem. Soc., Chem. Commun. 1994, 1937–1938; (f)
Ravindranathan, T.; Chavan, S. P.; Awachat, M. M. Tetrahedron Lett. 1994, 35,
8835–8838; (g) Mondal, E.; Bose, G.; Khan, A. T. Synlett 2001, 785–786; (h)
Ravindranathan, T.; Chavan, S. P.; Dantale, S. W. Tetrahedron Lett. 1995, 36,
2285–2288; (i) Yadav, J. S.; Reddy, B. V. S.; Raghavendra, S.; Satyanarayana, M.
Tetrahedron Lett. 2002, 43, 4679–4681; (j) Shirini, F.; Abedini, M.; Ghasemi, M.;
Sakhaei, A. R. Bull. Korean Chem. Soc. 2009, 30, 2479–2480.
2. (a) Reddy, M. S.; Narender, M.; Mahesh, A.; Nageswar, Y. V. D.; Rao, K. R. Synth.
Commun. 2006, 36, 3771–3775; (b) Kirihara, M.; Ochiai, Y.; Arai, N.; Takizawa,
S.; Momose, T.; Nemoto, H. Tetrahedron Lett. 1999, 40, 9055–9057; (c) Mondal,
E.; Sahu, P. R.; Khan, A. T. Synlett 2002, 463–467; (d) Chavan, S. P.; Dantale, S.
W.; Pasupathy, K.; Tejwani, R. B.; Kamat, S. K.; Ravindranathan, T. Green Chem.
2002, 4, 337–338; (e) Mondal, E.; Sahu, P. R.; Bose, G.; Khan, A. T. J. Chem. Soc.,
Perkin Trans. 1 2002, 1026–1028; (f) Khan, A. T.; Mondal, E.; Sahu, P. R. Synlett
2003, 377–381.
3. (a) Iranpoor, N.; Firouzabadi, H.; Shaterian, R. H. Tetrahedron Lett. 2003, 44,
4769–4773; (b) Karimi, B.; Seradj, H.; Tabaei, M. H. Synlett 2000, 1798–1800;
(c) Shaterian, H. R.; Hadadzadeh, H. Phosphorus, Sulfur Silicon 2006, 181, 1059–
1071; (d) Nishide, K.; Nakamura, D.; Yokota, K.; Sumiya, T.; Node, M.
Heterocycles 1997, 44, 393–404; (e) Nishide, K.; Yokota, K.; Nakamura, D.;
Sumiya, T.; Node, M. Tetrahedron Lett. 1993, 34, 3425–3428; (f) Perrier, H.;
Huyer, G.; Young, R. N. Tetrahedron Lett. 1992, 33, 725–728; (g) Lynch, J. E.;
Eliel, E. L. J. Am. Chem. Soc. 1984, 106, 2943–2948; (h) Komatsu, N.; Taniguchi,
A.; Wada, S.; Suzuki, H. Adv. Synth. Catal. 2001, 343, 475–480; (j) Fuji, K.;
Ichikawa, K.; Fujita, E. Tetrahedron Lett. 1978, 38, 3561–3562; (k) Wilson, G. E.,
Jr.; Huang, M. g. J. Org. Chem. 1976, 41, 966–968; (l) Rohman, Md. R.;
Rajbangshi, M.; Laloo, B. M.; Sahu, P. R.; Myrboh, B. Tetrahedron Lett. 2010, 51,
2862–2864; (m) Chen, L.; Wang, H. Org. Prep. Proced. Int. 1999, 31, 562–564.
4. Djerassi, C.; Shamma, M.; Kan, T. Y. J. Am. Chem. Soc. 1958, 80, 4723–4732.
5. Emerson, D. W. Tetrahedron Lett. 1971, 37, 3445–3448.
1m
2m, 64% 6, 14%
7, 86%
Scheme 2. Trapping experiment.
Chemoselectivity is crucial for the applicability of a protection
or deprotection strategy. Thus, to illustrate the selectivity of our
methodology, we prepared and examined several compounds
embracing other functional groups coexisting with 1,3-oxathiolane
(Table 3). In the presence of MOM ether and TBS ether, 1,3-oxathio-
lane could be selectively converted to the ketone (entries 1 and 2).
Dimethyl ketal and 1,3-dithiane showed also their stability under
the condition (entries 3 and 4). Importantly, even the chemo-selec-
tivity between 1,3-dioxolane and 1,3-oxathiolane could be realized
due to the difference of their deprotection rates (entry 5). It is
worth noting that those selectivities cannot be implemented in
the presence of acid (for compounds 4a–c, 4e) or mercury salt or
oxidants (for compound 4d).
The deprotection of 1,3-oxathiolane can be initiated from the
deprotonation at either S-attached carbon or O-attached carbon
(path a or path b, Scheme 1B). Considering that the reactions with
1,3-oxathiolanes are generally faster than those with 1,3-dioxalane
even at lower temperatures, we prefer a mechanism through the
path of a sulfur-stabilizing anion, which results in the decomposi-
tion or 1,3-oxathiolane. To testify our assumption, a trapping
experiment was conducted. After compound 1m was treated with
LTMP, TBDPSCl was added to trap the intermediates, resulting in
the formation of compounds 6 and 7, which supports our prelimin-
6. Crich, D.; Picione, J. Synlett 2003, 1257–1258.
7. Degani, I.; Fochi, R.; Regondi, V. Synthesis 1981, 51–53.
8. Nakayama, J.; Sugiura, H.; Shiotsuki, A.; Hoshino, M. Tetrahedron Lett. 1985, 26,
2195–2198.
9. Ghorbani-Vaghei, R.; Khazaei, A. Phosphorus, Sulfur Silicon 2004, 179, 1787–
1791.
10. Yeung, L. L.; Yip, Y. C.; Luh, T. Y. J. Org. Chem. 1990, 55, 1874–1881.
11. Yuan, C.; Yang, L.; Yue, G.; Yu, T.; Zhong, W.; Liu, B. Tetrahedron Lett. 2012, 53,
6972–6976.
12. (a) Yue, G.; Yang, L.; Yuan, C.; Jiang, X.; Liu, B. Org. Lett. 2011, 13, 5406–5408;
(b) Yue, G.; Yang, L.; Yuan, C.; Du, B. Tetrahedron 2012, 68, 9624–9637.
ary mechanistic suppose (Scheme 2)11
.
In general, we have developed an effective methodology for
deprotecting various 1,3-oxathiolanes to the corresponding ke-
tones, showing admirable chemoselectivity in the presence of dim-
ethylketal, 1,3-dioxolane, 1,3-dithiane, and other acid-labile
protecting groups. We believe it would get potentially a wide
application in organic synthesis.