mm21, 22 803 reflections measured, 8753 unique (Rint = 0.0198), R1
0.0777, wR2 = 0.1879, [I > 2s(I)], GOF = 1.128.
=
For 4b, C33H50FeN2, M = 530.60, monoclinic, space group P21/c, a =
20.8440(14), b = 8.6523(6), c = 17.9567(11) Å, b = 91.9790(10)°, U =
3236.5(4) Å3, T = 193(2) K, Z = 4, m(Mo-Ka) = 0.487 mm21, 19911
reflections measured, 7792 unique (Rint = 0.0285), R1 = 0.0545,
wR2 = 0.1335, [I > 2s(I)], GOF = 1.041.
For 5b, C31H46FeN2, M = 502.55, monoclinic, space group P21/n, a =
15.7646(12), b = 9.3607(7), c = 20.6882(16) Å, b = 93.9060(10)°, U =
3045.8(4) Å3, T = 193(2) K, Z = 4, m(Mo-Ka) = 0.514 mm21, 16927
reflections measured, 4823 unique (Rint = 0.0234), R1 = 0.0530, wR2
0.1559, [I > 2s(I)], GOF = 1.025.
=
2a: Yield 71%; Analysis found(calcd.) C, 76.40(76.19)%, H,
10.03(10.17)%, N, 4.45(4.56)%; meff(Evans) = 5.6(3) mB; 1H NMR (d/ppm,
400 MHz, C6D6, 21 °C): 130 (br s, 1H, b-CH), 128 (br s, 9H, tBu-CH3), 44
(br s, 18H, C(CH3)3), 25 (s, 4H, m-CH), 229 (s, 12H, iPr-CH3), 2110 (s,
i
i
2H, p-CH), 2116 (br s, 12H, Pr-CH3), 2143 (br s, 4H, Pr-CH); Vis
(pentane): 510 nm (510 M21cm21).
4b: Yield 86%; Analysis found(calcd.) C, 74.10(74.70)%, H,
1
9.56(9.50)%, N, 5.24(5.28)%; meff(Evans) = 6.0(3) mB; H NMR (d/ppm,
400 MHz, C6D6, 21 °C): 130 (br s, 1H, b-CH), 106 (br s, 6H, iBu-CH3), 70
(br s, 6H, a-CH3), 212 (s, 4H, m-CH), 218 (s, 12H, iPr-CH3), 274 (s, 2H,
p-CH), 2115 (br s, 12H, iPr-CH3), 2132 (br s, 4H, iPr-CH); Vis (pentane):
463 nm (810 M21cm21), 490 nm (720 M21cm21).
Fig. 1 ORTEP diagrams with thermal ellipsoids at 50% probability.
Hydrogen atoms not shown. Selected bond lengths (Å) and angles (°): for
2a, Fe(1)–N(11) 2.017(2), Fe(1)–C(14) 2.079(4), N(21)–Fe(1)–N(11)
93.10(9), N(21)–Fe(1)–C(14) 133.11(12); for 4b, Fe–N(1) 1.9830(16), Fe–
C(14b) 2.019(6), N(1)–Fe–N(2) 92.77(7), N(2)–Fe–C(14b) 123.43(17); for
5b, Fe(1)–N(11) 1.9828(19), Fe(1)–C(14) 2.033(3), N(11)–Fe(1)–N(21)
93.44(9), N(11)–Fe(1)–C(14) 132.51(10).
5b: Yield 85%; Analysis found(calcd.) C, 73.29(74.09)%, H,
1
8.78(9.23)%, N, 5.45(5.57)%; meff(Evans) = 5.6(3) mB; H NMR (d/ppm,
400 MHz, C6D6, 21 °C): 130 (br s, 1H, b-CH), 69 (br s, 6H, a-CH3), 212
(s, 4H, m-CH), 220 (s, 12H, iPr-CH3), 276 (s, 2H, p-CH), 2123 (br, 16H,
i
iPr-CH3, Pr-CH); Vis (pentane): 461 nm (740 M21cm21), 489 nm (750
M21cm21).
mol21·K21. The transition state for iv is more ordered than 4b,
as expected for b-hydride elimination.
b209389h/ for crystallographic files in CIF or other electronic format.
§ A transient intermediate can be observed by 1H NMR spectroscopy upon
mixing of 1b and Grignard reagent, but attempts to isolate this species or
unambiguously characterise it by low temperature NMR and electronic
absorption spectroscopies were unsuccessful.
¶ Rate constants at 63 °C (kobs/s21): ethylene 1.82(9) 3 1023; propene
2.2(1) 3 1023; 3,3,3-trifluoropropene 1.56(6) 3 1023. These data are also
consistent with rate-determining alkene dissociation, but the negative value
of DS‡ argues against this possibility.
In order to examine directly the isomerisation of an isolated
tert-butyl complex to an iso-butyl complex, we heated tert-butyl
compound 2a and found that it converts to 4a in a first-order
process (Scheme 1). The activation parameters of DH‡ = 85 ±
5 kJ mol21 and DS‡ = 254 ± 18 J mol21·K21 are similar to
those for alkene exchange, implying that b-hydride elimination
is again rate limiting. The reaction rate is independent of
isobutylene concentration, consistent with the mechanism in
Scheme 1.
1 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed.,
1999, 38, 428; S. D. Ittel, L. K. Johnson and M. Brookhart, Chem. Rev.,
2000, 100, 1169.
2 L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem. Soc.,
1995, 117, 6414; S. A. Svejda, L. K. Johnson and M. Brookhart, J. Am.
Chem. Soc., 1999, 121, 10634; L. H. Shultz, D. J. Tempel and M.
Brookhart, J. Am. Chem. Soc., 2001, 123, 11539.
3 G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J.
McTavish, G. A. Solan and A. J. P. White and D. J. Williams, Chem.
Commun., 1998, 849; B. L. Small and M. Brookhart, J. Am. Chem. Soc.,
1998, 120, 7143; B. L. Small, M. Brookhart and A. M. A. Bennett, J.
Am. Chem. Soc., 1998, 120, 4049.
4 L. Deng, P. Margl and T. Ziegler, J. Am. Chem. Soc., 1999, 121, 6479;
E. A. H. Griffiths, A. J. P. Britovsek, V. C. Gibson and I. R. Gould,
Chem. Commun., 1999, 1333.
5 G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J.
Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S.
Strömberg, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1999,
121, 8728.
6 V. C. Gibson, K. P. Tellmann, M. J. Humphries and D. F. Wass, Chem.
Commun., 2002, 2316.
7 J. M. Smith, R. J. Lachicotte and P. L. Holland, Chem. Commun., 2001,
1542.
8 T. J. J. Sciarone, A. Meetsma, B. Hessen and J. H. Teuben, Chem.
Commun., 2002, 1580.
9 J. M. Smith, R. J. Lachicotte and P. L. Holland, Organometallics, 2002,
21, 4808–4814.
10 D. L. Reger and P. J. McElligott, J. Organomet. Chem., 1981, 216, C12;
D. L. Reger, D. G. Garza and J. C. Baxter, Organometallics, 1990, 9,
873; J. A. Pool, C. A. Bradley and P. J. Chirik, Organometallics, 2002,
21, 1271.
11 T. J. Marks, M. R. Gagne, S. P. Nolan, L. E. Schock, A. M. Seyman and
D. Stern, Pure Appl. Chem., 1989, 61, 1665; J. L. Bennett and P. T.
Wolczanski, J. Am. Chem. Soc., 1997, 119, 10696; J. N. Harvey,
Organometallics, 2001, 20, 4887.
12 W. P. Giering and M. Rosenblum, J. Organomet. Chem., 1970, 25, C71;
D. L. Reger and E. C. Culbertson, Inorg. Chem., 1977, 16, 3104; K. H.
Pannell, T. Giasolli and R. N. Kapoor, J. Organomet. Chem., 1986, 316,
315.
Since 3 lies after the rate-determining step, kinetics do not
distinguish whether olefin exchange (v) is associative or
dissociative. However, heating either a mixture of 4a and 5b or
a mixture of 4b and 5a9 gave product solutions containing 4a,
4b, 5a, and 5b. Observation of alkyl crossover suggests that free
olefin is formed, assuming that there is no route for direct alkyl
exchange between metals. Therefore, it is likely that alkene
substitution in 3 follows a dissociative mechanism, and a three-
coordinate iron(II) hydride may be transiently formed.
Despite the low coordination number and obvious electronic
unsaturation, none of the alkyl complexes reported here have
agostic CH…Fe interactions in the solid state. The closest
Fe…H contacts in 2a, 4b and 5b are at least 2.50 Å. This
contrasts with the bisimine iron complexes reported/modelled
by Gibson and Ziegler, for which g-agostic interactions are
proposed to stabilise the active alkyl species.4,5
In summary, we have prepared 12-electron iron(II) C4
hydrocarbyl complexes, including a rare example of a tert-butyl
iron compound that was kinetically trapped using a hindered b-
diketiminate ligand. The presence of hydride intermediates
explains the kinetics of isomerisation and exchange reactions.
The less substituted complexes are favoured thermodynam-
ically, in accordance with predictions based on the polarity of
the metal–carbon bond,11 and this thermodynamic effect is a
possible explanation for the linear polyethylene from iron
catalysts.
Funding was provided by the National Science Foundation
(CHE-0134658) and the University of Rochester. We thank
Richard Eisenberg and William Jones for helpful discussions.
Notes and references
‡
Crystal data For 2a, C39H62FeN2, M = 614.76, monoclinic, space
group P21/n, a = 9.7226(5), b = 17.6389(9), c = 21.6557(10) Å, b =
96.8150(10)°, U = 3687.6(3) Å3, T = 193(2) K, Z = 4, m(Mo-Ka) = 0.436
CHEM. COMMUN., 2002, 2886–2887
2887