A. V. Alexandrova et al.
FULL PAPER
[7]
[22]
[23]
R. Schwesinger, H. Schlemper, Ch. Hasenfratz, J. Willaredt, T.
Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele,
H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish,
G.-Z. Ji, E.-M. Peters, K. Peters, H. G. von Schnering, L. Walz,
Liebigs Ann. 1996, 1055–1081.
a) T. E. Waldman, W. D. McGhee, J. Chem. Soc., Chem. Com-
mun. 1994, 957; b) D. Bensa, J. Rodriguez, Synth. Commun.
2004, 34, 1515–1533; c) V. Raab, E. Gauchenova, A. Merkou-
lov, K. Harms, J. Sundermeyer, B. Kovacˇevic´, Z. Maksic´, J.
Am. Chem. Soc. 2005, 127, 15738–15743; d) I. M. Lyapkalo,
M. A. K. Vogel, Angew. Chem. 2006, 118, 4124–4127; Angew.
Chem. Int. Ed. 2006, 45, 4019–4023; e) M. A. K. Vogel,
C. B. W. Stark, I. M. Lyapkalo, Synlett 2007, 2907–2911.
a) Yu. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin, Tetrahe-
dron 1981, 37, 437–472 and references cited therein; b) Yu. G.
Gololobov, Tetrahedron 1992, 48, 1353–1406, and references
cited therein.
C. Stuebe, H. P. Lankelma, J. Am. Chem. Soc. 1956, 78, 976–
977.
a) T. Høeg-Jensen, K. E. Olsen, A. Holm, J. Org. Chem. 1994,
59, 1257–1263; b) D. J. Dellinger, D. M. Sheehan, N. K. Chris-
tensen, J. G. Lindberg, M. H. Caruthers, J. Am. Chem. Soc.
2003, 125, 940–950.
[8]
[24]
The initial procedure for the preparation and isolation of
P(pyrr)3 was as follows: Pyrrolidine (9 equiv., freshly distilled
from Na/K alloy) was dissolved in dry THF, and cooled to
0 °C, and PCl3 (1 equiv.) was added dropwise with stirring un-
der argon. The mixture was stirred at room temp. for 3 h.
Work-up of the reaction mixture was performed as follows. A
portion of dry hexane was added in order to precipitate the
pyrrolidine hydrochloride completely, and the upper trans-
parent layer was carefully decanted from the precipitate under
a stream of argon. The solution was concentrated on a rotary
evaporator connected to an argon supply. The yield of the re-
sidual viscous oil of P(pyrr)3 was 75 %.
[9]
[10]
a) J. G. Verkade, Ph. B. Kisanga, Tetrahedron 2003, 59, 7819–
7858; b) M. W. P. Bebbington, D. Bourissou, Coord. Chem. Rev.
2009, 253, 1248–1261.
[25]
[26]
a) J. L. Bolliger, O. Blacque, C. M. Frech, Angew. Chem. 2007,
119, 6634–6637; Angew. Chem. Int. Ed. 2007, 46, 6514–6517;
b) J. L. Bolliger, C. M. Frech, Chem. Eur. J. 2010, 16, 4075–
4081.
[11]
[12]
H. Staudinger, Helv. Chim. Acta 1919, 2, 635–646.
a) M. Alajarín, P. Molina, A. López-Lázaro, C. Foces-Foces,
Angew. Chem. 1997, 109, 147–150; Angew. Chem. Int. Ed. Engl.
1997, 36, 67–70; b) M. Alajarín, A. López-Lázaro, A. Vidal, J.
Berná, Chem. Eur. J. 1998, 4, 2558–2570; c) M. Alajarín, A.
López-Lázaro, J. Berná, J. W. Steed, Tetrahedron 2007, 63,
2078–2083; d) R. D. Kennedy, Chem. Commun. 2010, 46, 4782–
4784.
a) P. Ilankumaran, J. G. Verkade, J. Org. Chem. 1999, 64, 9063–
9066; b) H. Naka, N. Kanase, M. Ueno, Y. Kondo, Chem. Eur.
J. 2008, 14, 5267–5274; c) C. R. Venkat Reddy, J. G. Verkade, J.
Org. Chem. 2007, 72, 3093–3096; d) C. R. Venkat Reddy, B. M.
Fetterly, J. G. Verkade, Energy Fuels 2007, 21, 2466–2472.
a) H. Goldwhite, P. Gysegem, S. Schow, Ch. Swyke, J. Chem.
Soc., Dalton Trans. 1975, 16–18; b) Ch. Widauer, H.
Grützmacher, I. Shevchenko, V. Gramlich, Eur. J. Inorg. Chem.
1999, 1659–1664; c) W. Quan, Y. A. Wang, J. Org. Chem. 2004,
69, 4299–43.
a) Ch. W. Rees, D. I. Smith, J. Chem. Soc. Perkin Trans. 1 1987,
1159–1164; b) J. Tang, J. Dopke, J. G. Verkade, J. Am. Chem.
Soc. 1993, 115, 5015–5020; c) A. A. Kolomeitsev, I. A. Koppel,
T. Rodima, J. Barten, E. Lork, G.-V. Röschenthaler, I. Kaljur-
and, A. Kütt, I. Koppel, V. Mäemets, I. Leito, J. Am. Chem.
Soc. 2005, 127, 17656–17666; d) M. Alajarín, M. Marin-Luna,
M.-M. Ortin, P. Sanchez-Andrada, A. Vidal, Tetrahedron 2009,
65, 2579–2590.
For the formation of (iPr2N)2PCl as the sole product of the
reaction of PCl3 with diisopropylamine, see: a) E. H. Wong,
M. M. Turnbull, K. D. Hutchinson, C. Valdez, E. J. Gabe, F. L.
Lee, Y. L. Page, J. Am. Chem. Soc. 1988, 110, 8422–8428; b) S.
Hamamoto, H. Takaku, Chem. Lett. 1986, 1401–1404; c) A.
Baceiredo, G. Bertrand, J.-P. Majoral, F. E. Anba, G. Manuel,
J. Am. Chem. Soc. 1985, 107, 3945–3949. For precedent for the
formation of P(NiPr2)3, see: d) E. E. Nifant’ev, S. V. Suvorkin,
E. N. Rasadkina, O. V. Selyutina, A. V. Shishin, Zh. Obshch.
Khim. 2002, 72, 1263–1266; (Russ. J. Gen. Chem. Engl. 2002,
72, 1183–1185). Applications of P(NiPr2)3: e) T.-B. Huang, J.-
L. Zhang, Phosphorus Sulfur Silicon Relat. Elem. 1995, 104,
33–44; f) H. Hund, R.-D. Hund, S. Has, G.-V. Röschenthaler,
Phosphorus Sulfur Silicon Relat. Elem. 1996, 111, 193. For an
explanation of the dichotomy, see: g) A. P. Marchenko, G. N.
Koidan, Y. M. Pustovit, M. I. Povolotskii, A. N. Chernega,
A. M. Pinchuk, Phosphorus Sulfur Silicon Relat. Elem. 2008,
183, 797–798.
a) T. J. Atkins, Tetrahedron Lett. 1978, 45, 4331–4332; b)
R. D. H. Kim, M. Wilson, J. Haseltine, Synth. Commun. 1994,
24, 3109–3114; c) R. W. Alder, R. W. Mowlam, D. J. Vachon,
G. R. Weisan, J. Chem. Soc., Chem. Commun. 1992, 507–508.
CCDC-831687 (for 1d), CCDC-831688 (for 1e), CCDC-831689
(for 2d·HBF4), CCDC-831690 (for 2e·HBF4), CCDC-831691
(for 2f·HOTs) and CCDC-849644 (for 2e) contain the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[13]
[14]
[15]
[27]
[28]
[16]
[17]
[18]
[19]
H. Goldwhite, P. Gysegem, S. Schow, Ch. Swyke, J. Chem. Soc.,
Dalton Trans. 1975, 12–15.
J. R. Goerlich, M. Farkens, A. Fischer, P. G. Jones, R.
Schmutzler, Z. Anorg. Allg. Chem. 1994, 620, 707–715.
ˇ
R. A. Kunetskiy, I. Císarˇová, D. Saman, I. M. Lyapkalo,
[29]
[30]
G. C. Fortman, B. Captain, C. D. Hoff, Inorg. Chem. 2009, 48,
188–1810.
Chem. Eur. J. 2009, 15, 9477–9485.
a) M. Kitamura, M. Yano, N. Tashiro, S. Miyagawa, M. Sando,
T. Okauchi, Eur. J. Org. Chem. 2011, 548–462; b) E. P. Kyba,
R. A. Abramovich, J. Am. Chem. Soc. 1980, 102, 735–740; c)
P. J. Baldry, A. R. Forrester, M. M. Ogilvy, R. H. Thomson, J.
Chem. Soc. Perkin Trans. 1 1982, 2027–2034; d) S. P. Klump,
H. Shechter, Tetrahedron Lett. 2002, 43, 8421–8423; e) V. V.
Zhdankin, A. P. Krasutsky, Ch. J. Kuehl, A. J. Simonsen, J. K.
Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc. 1996,
118, 5192–5197; f) C. J. Cavender, V. J. Shiner Jr., J. Org. Chem.
1972, 37, 3567–3569.
The average P–N single bond length is 1.663 Å for pentacoor-
dinate phosphorus compounds of type (X2N)3P=O, and the
common length of the P=N double bond is 1.599 Å in com-
pounds of type Ph3P=N–C. These values are taken from: F. H.
Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen,
R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, S1–S19.
[31]
[32]
A. A. Grishina, S. M. Polyakova, R. A. Kunetskiy, I. Císarˇová,
I. M. Lyapkalo, Chem. Eur. J. 2011, 17, 96–100.
a) I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets,
I. Leito, I. A. Koppel, J. Org. Chem. 2005, 70, 1019–1028; b)
E.-I. Rõõm, A. Kütt, I. Kaljurand, I. Koppel, I. Leito, I. A.
Koppel, M. Mishima, K. Goto, Y. Miyahara, Chem. Eur. J.
2007, 13, 7631–7643; c) L. Sooväli, I. Kaljurand, A. Kütt, I.
Leito, Anal. Chim. Acta 2006, 566, 290–303.
“dma” and “pyrr” in abbreviations for the reference bases (Rb)
denote dimethylamino and 1-pyrrolidinyl groups; for the struc-
tures of the bases see: T. Rodima, I. Kaljurand, A. Pihl, V.
[20]
[21]
J. C. Bottaro, P. E. Penwell, R. J. Schmitt, Synth. Commun.
1997, 27, 1465–1467.
a) M. Sathishkumar, P. Shanmugavelan, S. Nagarajan, M.
Maheswari, M. Dinesh, A. Ponnuswamy, Tetrahedron Lett.
2011, 52, 2830–2833; b) M. Sathishkumar, S. Nagarajan, P. Sh.
Velan, M. Dinesh, A. Ponnuswamy, J. Braz. Chem. Soc. 2011,
22, 2065–2069; c) A. Ponnuswamy, P. Shanmugavelan, S. Naga-
rajan, M. Sathishkumar, Helv. Chim. Acta 2012, 95, 922–928.
[33]
1822
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 1811–1823