ChemComm
Communication
Scheme 6 Major by-product formation in the reaction of 5e with [18F]HCF3.
Scheme 5
[
18F]trifluoromethylation using [18F]HCF3.
In these reactions, also no radioactive by-products were
formed and in the synthesis of [18F]4e (R2 = 4-NO2) and [18F]4f
(R2 = 3-NO2) only unreacted [18F]trifluoromethane was observed.
Substrate degradation, as was observed using UV-HPLC, caused
by the strong basic conditions probably led to low yields.
Benzaldehydes 5 reacted in a moderate to high yield with
[18F]trifluoromethane (Table 3). Also here a positive effect of an
increasing KOtBu concentration on the product yield was
observed. Most reactions did not yield by-products, except for
the synthesis of [18F]6e. In this case not [18F]6e, but [18F]8 was
formed (Scheme 6). This may be explained by nucleophilic
attack of the tert-butoxide anion on the precursor 4-nitro-
benzaldehyde 5e (Scheme 6) resulting in 4-t-butoxy-benzaldehyde
7 which subsequently reacts with [18F]trifluoromethane to form
[18F]1-(4-(tert-butoxy)phenyl)-2,2,2-trifluoroethanol 8.
Table 1 Trifluoromethylation of benzophenones 1a
Substrate
(mmol)
KOtBu
(mmol)
Radiochemical
conversion (%)
Entry
R2
Product
1
2
3
4
5
6
7
8
9
H
10
10
10
10
10
10
10
10
10
20
20
30
20
20
20
50
20
50
[
[
[
[
[
[
[
[
[
18F]2a
18F]2b
18F]2b
18F]2c
18F]2d
18F]2e
18F]2e
18F]2f
18F]2f
>99
16
>99
99
>99
1
96
4-OMe
4-OMe
4-CF3
4-F
4-NO2
4-NO2
3-NO2
3-NO2
30
74
a
Reaction conditions: 1 mL DMF, 20 1C, 5 minutes.
In summary, [18F]trifluoromethane can be prepared in high yield
in a short synthesis time and undergoes smooth reaction with
various aromatic aldehydes and ketones to give [18F]trifluoromethyl-
carbinols in reasonable to good yields. Substrate stability seems to
be the most important factor to obtain high product yields.
We are currently investigating the use of [18F]trifluoro-
methane towards other products (trifluoromethylthioethers,
trifluoromethylarenes) and towards the synthesis of [18F]TMSCF3,
a milder reagent for trifluoromethylation reactions.
Table 2 Trifluoromethylation of acetophenones 3a
Substrate
(mmol)
KOtBu
(mmol)
Radiochemical
conversion (%)
Entry
R2
Product
1
2
3
4
5
6
H
100
100
100
100
100
100
150
150
150
150
150
150
[
[
[
[
[
[
18F]4a
18F]4b
18F]4c
18F]4d
18F]4e
18F]4f
41
44
22
36
0
4-OMe
4-CF3
4-F
4-NO2
3-NO2
0
a
Reaction conditions: 1 mL DMF, 80 1C, 5 minutes.
Notes and references
Table 3 Trifluoromethylation of benzaldehydes 5a
1 (a) J. S. Fowler and A. P. Wolf, Acc. Chem. Res., 1997, 30, 181;
(b) M. E. Phelps, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 9226.
2 (a) J. S. Fowler, Y. Ding and N. D. Volkow, Semin. Nucl. Med., 2003,
33, 14; (b) J. K. Willmann, N. van Bruggen, L. M. Dinkelborg and
S. S. Gambhir, Nat. Rev. Drug Discovery, 2008, 7, 591; (c) M. P. S. Dunphy
and J. S. Lewis, J. Nucl. Med., 2009, 50, 106S; (d) S. Vallabhajosula,
Molecular Imaging: Radiopharmaceuticals for PET and SPECT, Springer-
Verlag, Berlin, Heidelberg, 2009; (e) S. Vallabhajosula, L. Solnes and
B. Vallabhajosula, Semin. Nucl. Med., 2011, 41, 246.
3 (a) P. W. Miller, N. J. Long, R. Vilar and A. D. Gee, Angew. Chem., Int.
ed., 2008, 47, 8998; (b) S. M. Ametamey, M. Honer and P. A. Schubiger,
Chem. Rev., 2008, 108, 1501; (c) L. Cai, S. Lu and V. W. Pike, Eur. J. Org.
Chem., 2008, 2853; (d) H. H. Coenen, P. H. Elsinga, R. Iwata,
M. R. Kilbourn, M. R. A. Pillai, M. G. R. Rajan, H. N. Wagner Jr. and
J. J. Zaknun, Nucl. Med. Biol., 2010, 37, 727; (e) R. Littich and
P. J. H. Scott, Angew. Chem., Int. Ed., 2012, 51, 1106.
Precursor
(mmol)
KOtBu
(mmol)
Radiochemical
conversion (%)
Entry
R2
Product
1
2
3
4
5
6
7
8
H
10
10
10
10
20
10
10
10
10
10
20
20
20
20
50
50
20
50
20
20
50
50
[
[
[
[
[
[
[
[
[
[
[
18F]6a
18F]6b
18F]6c
18F]6c
18F]6c
18F]6d
18F]6d
18F]6e
18F]6f
18F]6f
18F]6f
97
98
31
43
86
3
94
0b
2
4-OMe
4-CF3
4-CF3
4-CF3
4-F
4-F
4-NO2
3-NO2
3-NO2
3-NO2
9
10
11
26
90
4 (a) H. L. Yale, J. Med. Pharm. Chem., 1959, 1, 121; (b) S. Purser,
P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2007, 37, 320.
5 (a) M. R. Kilbourn, M. R. Pavia and V. E. Gregor, Appl. Radiat. Isot.,
1990, 41, 823; (b) M. K. Das and J. Mukherjee, Appl. Radiat. Isot., 1993,
a
b
Reaction conditions: 1 mL DMF, 20 1C, 5 minutes. Increasing KOtBu
or precursor amounts did not lead to increased yield.
¨
44, 835; (c) P. Johnstrom and S. Stone-Elander, J. Labelled Compd.
High base concentrations probably led to faster deprotona-
tion and reaction of [18F]trifluoromethane with the substrates,
before degradation of the substrate occurred.
Radiopharm., 1995, 39, 537; (d) J. Prabhakaran, M. D. Underwood,
R. V. Parsey, V. Arango, V. J. Majo, N. R. Simpson, R. van Heertum,
J. J. Mann and J. S. D. Kumar, Bioorg. Med. Chem., 2007, 15, 1802;
(e) M. Suehiro, G. Yang, G. Torchon, E. Ackerstaff, J. Humm,
J. Koutcher and O. Ouerfelli, Bioorg. Med. Chem., 2011, 19, 2287.
In the case of acetophenones 3, enolate formation was
expected under the applied reaction conditions, which would 6 (a) P. J. Riss and F. I. Aigbirhio, Chem. Commun., 2011, 47, 11873;
(b) P. J. Riss, V. Ferrari, L. Brichard, P. Burke, R. Smith and
lead to a decreased availability of reactive ketones. Indeed,
higher base and precursor concentrations were required to
F. I. Aigbirhio, Org. Biomol. Chem., 2012, 10, 6980.
´
7 J. Russel and N. Roques, Tetrahedron, 1998, 54, 13771; B. Folleas,
obtain the products in satisfactory yields (Table 2).
I. Marek, J.-F. Normant and L. Saint-Jalmes, Tetrahedron, 2000, 56, 275.
c
4020 Chem. Commun., 2013, 49, 4018--4020
This journal is The Royal Society of Chemistry 2013