4
8.
9.
Tetrahedron
7.
Makovec, F.; Peris, W.; Revel, L.; Giovanetti, R.; Mennuni, L.;
Rovati, L. C. J. Med. Chem. 1992, 35, 28-38.
27.1 (CH3-tBu), 48.9 (C-5), 52.3 (C-1), 55.4 (C), 62.3 (C-8), 90.5 (C-
4), 125.9 (C-6 and C-10), 133.3 (C-7 and C-9), 165.3 (C-3). HRMS
(ESI-TOF): Calcd for C13H18Cl2NO2 290.0709 (M++1). Found
290.0719. More polar: IR (NaCl, neat): 3254, 3034, 2972, 2871,
1713, 1474, 1400, 1367, 1306, 1245, 1216, 1015, 923, 885, 777, 741,
Badger, A. M.; Schwartz, D. A.; Picker, D. H.; Dorman, J. W.;
Bradley, F. C.; Cheeseman, E. N.; Dimartino, M. J.; Hanna N.;
Mirabelli, C. K. J. Med. Chem. 1990, 33, 2963-2970.
Kazmierski, W. M.; Furfine, E.; Spaltenstein, A.; Wright, L. L. Biorg.
Med. Chem. Lett. 2002, 12, 3431-3433.
1
694, 682, 563, 516 cm-1; H NMR (CDCl3, 400 MHz): δ 1.43 (9H, s,
CH3), 1.58 (1H, br s, OH), 3.34 (2H, s, 1-H), 4.52 (1H, br s, 8-H), 5.96
(2H, dq, J = 10.4, 1.6 Hz, 6-H and 10-H), 6.24 (2H, ddt, J = 10.4, 3.6,
2 Hz, 7-H and 9-H); 13C NMR (CDCl3, 100 MHz): δ 27.1 (CH3-tBu),
48.6 (C-5), 52.7 (C-1), 55.4 (C), 62.1 (C-8), 89.7 (C-4), 126.9 (C-6 and
C-10), 132.4 (C-7 and C-9), 165.3 (C-3). HRMS (ESI-TOF): Calcd for
C13H18Cl2NO2 290.0709 (M++1). Found 290.0698.
10. For metal-assisted aminocyclization procedures, see: (a) Solé, D.;
Cancho, Y.; Llebaria, A.; Moretó, J. M.; Delgado, A. J. Org. Chem.
1996, 61, 5895-5904; (b) Zhou, C.-Y.; Che, C.-M. J. Am. Chem. Soc.
2007, 129, 5828-5829; (c) Rosewall, C. F.; Sibbald, P. A.; Liskin, D.
V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488-9489; (d)
Reznichenko, A. L.; Hultzch, K. C. Organometallics 2010, 29, 24-27;
(e) Yeh, M.-C. P.; Pai, H.-F.; Hsiow, C.-Y.; Wang, Y.-R.
Organometallics 2010, 29, 160-166; (f) Rosen, B. R.; Ney, J. E.;
Wolfe, P. P. J. Org. Chem. 2010, 75, 2756-2759; (g) Hesp, K. D.;
Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413-426; (h)
Yeh, M.-C. P.; Fang, C.-W.; Lin, H.-H. Org. Lett. 2012, 14, 1830-
1833.
11. For other synthetic approaches, see: (a) Cossy, J.; Bouzide, A.; Pfau,
M. J. Org. Chem. 1997, 62, 7106-7113; (b) Bryans, J. S.; Davies, N.;
Gee, N. S.; Dissanayake, V. U. K.; Ratcliffe, G. S.; Horwell, D. C.;
Kneen, C. O.; Morrell, A. I.; Oles, R. J.; O’Toole, J. C.; Perkins, G.
M.; Singh, L.; Suman-Chauahan, N.; O’Neill J. A. J. Med. Chem.
1998, 41, 1838-1845; (c) Cossy, J.; Bouzide, A.; Leblanc, C. J. Org.
Chem. 2000, 65, 7257-7265; (d) Kitagawa, O.; Miyaji, S.; Yamada, Y.;
Fujiwara, H.; Taguchi, T. J. Org. Chem. 2003, 68, 3184-3189; (e)
Iwasaki, H.; Tsutsui, N.; Eguchi, T.; Ohno, H.; Yamashita, M.;
Tanaka, T. Tetrahedron Lett. 2011, 52, 1770-1772; (f) Moriyama, K.;
Izumisawa, Y.; Togo H. J. Org. Chem. 2011, 76, 7249-7255.
12. (a) Rishton, G. M.; Schwartz, M. A.; Tetrahedron Lett. 1988, 29, 2643-
2646; (b) Santra, S.; Andreana, P. R. Org. Lett. 2007, 9, 5035-5038; (c)
Pigge, F. C.; Dhanya, R.; Hoefgen, E. R. Angew. Chem. Int. Ed. 2007,
46, 2887-2890; (d) Ovens, C.; Martin, N. G.; Procter, D. J. Org. Lett.
2008, 10, 1441-1444; (e) Rozhkova, Y. S.; Khmelevskaya, K. A.;
Shklyaev, Y. V.; Ezhikova, M. A.; Kodess, M. I. Russ. J. Org. Chem.
2012, 48, 69-77.
23. Almost of the reactions from 1e provided also a variable amount of
secondary amide resulting from the cleavage of the tert-butyl group.
24. (a) Rosenberg, S. H.; Rapoport, H. J. Org. Chem. 1985, 50, 3979-
3982; (b) Albrecht, D.; Basler, B.; Bach, T. J. Org. Chem. 2008, 73,
2345-2356.
25. As suggested by the reviewers, an extension of the ATRC process
reported here to different aromatic rings25a,b and tethers25c,d could be of
interest: (a) Kaoudi, T.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z.
Angew. Chem. Int. Ed. 2000, 39, 31-733. (b) Guindeuil, S.; Zard, S. Z.
Chem. Commun. 2006, 665-667. (c) Quiclet-Sire, B.; Zard, S. Z. Chem.
Commun. 2002, 2306-2307. (d) Bacqué, E.; El Qacemi, M.; Zard, S. Z.
Org. Lett. 2005, 7, 3817-3820.
13. (a) Ibarra-Rivera, T. R.; Gámez-Montaño, R.; Miranda, L. D. Chem.
Comm. 2007, 3485-3487. (b) Gámez-Montaño, R.; Ibarra-Rivera, T.;
El Kaïm, L.; Miranda, L. D. Synthesis 2010, 1285-1290.
14. Boivin, J.; Yousfi, M.; Zard, S. Z. Tetrahedron Lett. 1997, 38, 5985-
5988.
15. For a review, see: W. T Eckenhoff and T. Pintauer, Catal. Rev. Sci.
Eng. 2010, 52, 1-59.
16. Diaba, F.; Martínez-Laporta, A.; Bonjoch, J.; Pereira, A.; Muñoz-
Molina, J. M.; Pérez, J. P.; Belderrain, T. R. Chem. Comm. 2012, 48,
8799-8801.
17. For a related reaction upon an indole ring leading to spiroindolines,
see: Van der Jeught, S.; De Vos, N.; Masschelein, K.; Ghiviriga, I.;
Stevens, C. V. Eur. J. Org. Chem. 2010, 544-5453. See also, Kyei, A.
S.; Tchabaneko, K.; Baldwin, J. E.; Adlington, R. M. Tetrahedron Lett.
2004, 45, 8931-8934.
18. Compound 1d was prepared by reductive amination of cyclohexanone
using benzylamine, followed by reaction with trichloroacetyl chloride.
19. (a) Stork, G.; Mah, R. Heterocycles 1989, 28, 723-727; (b) Yu, J.-D.;
Ding, W.; Lian, G.-Y.; Song, K.-S.; Zhang, D.-W.; Gao X.; Yang, D.
J. Org. Chem. 2010, 75, 3232-3239.
20. When no radical trapping reagent was used, the capture of the
cyclohexanedienyl radical probably occurred by an oxidation and later
nucleophilic addition.
21. The formation of 1,4-dienes reflects the known propensity of
cyclohexanedienyl radicals for kinetic trapping at the internal position:
Beckwith, A. L. J.; O’Shea, D. M.; Roberts, D. H. J. Am. Chem. Soc.
1986, 108, 6408-6409. See also, Crich D.; Krishnamurthy, V.
Tetrahedron 2006, 62, 6830-6840.
22. Reaction procedure: In a 10 mL vessel were placed trichloroacetamide
1e (100 mg, 0.32 mmol), CuCl (19 mg, 0.19 mmol, 60%) and
acetonitrile (1 mL). The stirred reaction mixture was heated at 80 ºC
using microwave irradiation for 15 min. After reaching rt, water (1
mL) was added, the mixture was stirred for an additional 1 h, and then
extracted with CH2Cl2. The organics were dried, concentrated and
purified by chromatography (CH2Cl2 to CH2Cl2/AcOEt 98:2) to give
separable alcohols 3e (70 mg, 74%) in a 3:2 proportion. Less polar: IR
(NaCl, neat): 3529, 3399, 3284, 3039, 2977, 2934, 2870, 1720,
1478,1399, 1365, 1305, 1246, 1222, 1032, 1010, 895, 872, 829, 775,
1
739, 681, 582, 525 cm-1; H NMR (CDCl3, 400 MHz, COSY): δ 1.43
(9H, s, CH3), 1.97 (1H, br s, OH), 3.39 (2H, s, 1-H), 4.66 (1H, br s, 8-
H), 5.88 (2H, dq, J = 10.4, 2 Hz, 6-H and 10-H), 6.23 (2H, ddt, J =
10.4, 3, 2 Hz, 7-H and 9-H); 13C NMR (CDCl3, 100 MHz, HSQC): δ