ChemComm
Communication
Table 3 Scope of the reaction: substitution at the alkylidene azlactone
Financial support for this work from the Ministerio de
´
Ciencia e Innovacion of Spain (MICINN, CTQ2009-07791), the
Ministerio de Economia y Competitividad (MINECO, CTQ2012-
35790) and CAM (project AVANCAT; S2009/PPQ-1634) is grate-
fully acknowledged. M.G.-E. thanks the MICINN for a predoctoral
fellowship. We thank the Takasago Company (Dr Taichiro Touge)
for generous loans of segphos chiral ligands.
Notes and references
1 For selected reviews, see: (a) W.-F. Xu, X.-C. Cheng, Q. Wang and
H. Fang, Curr. Med. Chem., 2008, 15, 374; (b) C. V. Calliford and
K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748.
2 (a) T. Kan, Y. Kawamoto, T. Asakawa, T. Furuta and T. Fukuyama,
Org. Lett., 2008, 10, 169; (b) S. Pizzarello, Acc. Chem. Res., 2006,
39, 231; (c) O. Yasufumi and S. Tetsuro, Eur. J. Org. Chem., 2005, 5127.
3 For reviews, see: (a) C. Grondal, M. Jeanty and D. Enders, Nat.
Chem., 2010, 2, 167; (b) Proc. Natl. Acad. Sci., USA, 2010, 107 special
feature issue on organocatalysis.
4 (a) A. Pedretti, L. De Luca, C. Sciarrillo and G. Vistoli, ChemMed-
Chem, 2008, 3, 79; (b) M. Frauli, N. Hubert, S. Schann, N. Triballeau,
´
H.-O. Bertrand, F. Acher, P. Neuville, J.-P. Pin and L. Prezeau, Mol.
Pharmacol., 2007, 71, 704; (c) J. A. Monn, M. J. Valli, B. G. Johnson,
C. R. Salhoff, R. A. Wright, T. Howe, A. Bond, D. Lodge, L. A.
Spangle, J. W. Paschal, J. B. Campbell, K. Griffey, J. P. Tizzano and
D. D. Schoepp, J. Med. Chem., 1996, 39, 2990.
5 C. E. Schafmeister, Z. Z. Brown and S. Gupta, Acc. Chem. Res., 2008,
41, 1387.
6 (a) M. Katoh, C. Hisa and T. Honda, Tetrahedron Lett., 2007, 48, 4691;
(b) M. J. Valli, D. D. Schoepp, R. A. Wright, B. G. Johnson, A. E. Kingston,
R. Tomlinson and J. A. Moon, Bioorg. Med. Chem. Lett., 1998, 8, 1985.
7 For recent reviews, see: (a) J. Adrio and J. C. Carretero, Chem.
a
b
Isolated yields of major diastereomer 4. Isolated yields of the 4 + 5
c
´
Commun., 2011, 47, 6784; (b) C. Najera and J. M. Sansano, Top.
mixture after column chromatography. Diastereomeric ratios 4 : 5
using 1H-NMR from the crude mixtures. ee determined using chiral
d
Heterocycl. Chem., 2008, 12, 117.
8 For selected very recent references see: (a) A. D. Lim, J. A. Codelli and
S. E. Reisman, Chem. Sci., 2013, 4, 650; (b) M. Potowski, J. O. Bauer,
C. Strohmann, A. P. Antonchick and H. Waldmann, Angew. Chem.,
Int. Ed., 2012, 51, 9512; (c) M. Potowski, M. Schu¨rmann,
P. Antonchick and H. Waldmann, Nat. Chem. Biol., 2012, 8, 428.
9 (a) T.-L. Liu, Z.-L. He and C.-J. Wang, Chem. Commun., 2011, 47, 9600;
(b) T.-L. Liu, Z.-L. He, Q.-H. Li, H.-Y. Tao and C.-J. Wang, Adv. Synth.
Catal., 2011, 353, 1713; (c) T.-L. Liu, Z.-L. He, H.-Y. Tao, Y.-P. Cai and
C.-J. Wang, Chem. Commun., 2011, 47, 2616; (d) A. P. Antonchick,
C. Gerding-Reimers, M. Catarinella, M. Scharmann, H. Preut,
S. Ziegler, D. Rauh and H. Waldmann, Nat. Chem., 2010, 2, 735.
10 (a) D. Wang, Y. Wei and M. Shi, Chem. Commun., 2012, 48, 2764;
(b) B. M. Trost and P. J. Morris, Angew. Chem., Int. Ed., 2011,
50, 4236; for diastereoselective 1,3 dipolar cycloaddition of azo-
methine ylides to chiral oxazolidinones, see: (c) S. G. Pyne, J. Safaei-G
and F. Koller, Tetrahedron Lett., 1995, 36, 2511.
HPLC, see ESI.
Scheme 2
selectivity dropped significantly (cycloadduct 4x). Alkenyl azlactones
were also suitable substrates for this reaction, providing the major
isomer 4y with excellent enantioselectivity (97% ee).
The selective hydrolysis of the ester groups of the pyrrol-
idines 4a and 4c was readily achieved in the presence of NaOH
in EtOH, providing the pyrrolidine dicarboxylic acids 7a and 7c
in 85% and 80% yield respectively, without any detectable
epimerization15 (Scheme 2).
11 A variety of metal salts and structurally diverse chiral ligands were
tested in this cycloaddition, see ESI† for details.
12 For the use of segphos ligands in catalytic asymmetric 1,3-dipolar
cycloadditions of azomethine ylides, see: (a) Y. Yamashita, T. Imaizumi
and S. Kobayashi, Angew. Chem., Int. Ed., 2011, 50, 4893;
´
(b) J. Hernandez-Toribio, S. Padilla, J. Adrio and J. C. Carretero,
´
Angew. Chem., Int. Ed., 2012, 51, 8854; (c) M. Gonzalez-Esguevillas,
J. Adrio and J. C. Carretero, Chem. Commun., 2012, 48, 2149;
(d) Y. Oderaotoshi, W. Cheng, S. Fujitomi, Y. Kasano, S. Minakata
and M. Komatsu, Org. Lett., 2003, 5, 5043.
In summary, we have developed an efficient methodology for 13 The absolute and relative configuration of isomers 4, 5 and 6 was
determined by X-ray diffraction analysis and NMR studies, see
ref. 14 and ESI†.
14 CCDC 924149 (4c) and 924150 (6c).† Compound 6c was obtained using
the preparation of 4-amidopyrrolidine-2,4-dicarboxylates via
catalytic asymmetric [3+2] cycloaddition of azomethine ylides
with alkylidene azlactones. The use of AgI–DTBM-segphos
as catalyst leads to the formation of the corresponding
cycloadducts with excellent levels of diastereoselectivity and
enantiocontrol (up to Z99% ee). Hydrolysis of the ester groups
under standard conditions afforded the 4-amidopyrrolidine
2,4-dicarboxylic acids which encompass potential pharmacological
applications.
different reaction conditions ((R)-Tol-Binap as a ligand), see ESI† for
details. For previous examples of azomethine ylide dipolar cyclo-
additions where 2,5-trans pyrrolidine derivatives were obtained, see:
(a) A. Awata and T. Arai, Chem.–Eur. J., 2012, 18, 8278; (b) E. E.
´
´
Maroto, S. Filippone, A. Martın-Domenech, M. Suarez and N. Martın,
J. Am. Chem. Soc., 2012, 134, 12936; (c) T. Arai, N. Yokoyama, A. Mishiro
and H. Sato, Angew. Chem., Int. Ed., 2010, 49, 7895.
15 F. Clerici, M. L. Gelmi, A. Gambini and D. Nava, Tetrahedron, 2001,
57, 6429.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 4649--4651 4651