amine oxides,5aꢀg amines,5h,i phosphine oxides,5j phosphines,5k
sulfoxides,5c,l sulfides,5l,m and other compounds,5n,o proved
to have considerable advantages over the traditional thermal
conditions. However, the use of an additive inherently leads
to production of wastes derived from it. To circumvent the
use of an additive, other methods for activation have also
been investigated. However, such methods also suffer from
some drawbacks. For example, the irradiation of micro-
waves should be classified as a harsh condition which is not
suitable for the synthesis of complex molecules sensitive to
heat.6 Ultrasound needs to be used with additives to obtain
a large accelerating effect.5g,j The dry state adsorption
techniques were also shown to be efficient, but the synthesis
on a solid surface is challenged in the process of scale-up.7
Meanwhile, light irradiation was found to be effective,
and the photochemical method serves as a milder, greener
approach for activation.4a,8,9 However, photochemical
reactions generally suffer from problems in efficiency and
scale-up. Thus, we attempted to use a flow microreactor
system10,11 for the light-mediated PausonꢀKhand reac-
tions, because the short light path length and high surface-
to-volume ratios of flow microreactors are generally
beneficial for photochemical reactions from the viewpoints
Table 1. PausonꢀKhand Reaction of Phenylacetyleneꢀ
Dicobalt Complex 1a and Norbornene (2a) in a Photochemical
Flow Microreactora
entry
t
R (s)
conversion (%)b
yield (%)b
1
22
55
55
110
55
83
94
71
99
<1
62
88
71
90
<1
2
3c
4
5d
a For the microchannel: depth, 200 μm; width, 1000 μm; length,
916.04 mm; area, 916.83 mm2. Flow rate: 0.1ꢀ0.5 mL/min. The light
source: medium pressure mercury lamp. b Determined by 1H NMR
analysis of the crude products obtained by passing through a short silica
gel pad to remove highly polar materials. c Run using the microreactor
with 500 μm depth. d Run without light.
(6) (a) Iqbal, M.; Vyse, N.; Dauvergne, J.; Evans, P. Tetrahedron
Lett. 2002, 43, 7859. (b) Fischer, S.; Groth, U.; Jung, M.; Schneider, A.
€
Synlett 2002, 2023. (c) Fager-Jokela, E.; Kaasalainen, E.; Leppanen, K.;
Tois, J.; Helaja, J. Tetrahedron 2008, 64, 10381.
of efficiency and scalability.12ꢀ14 Herein, we demonstrate
that PausonꢀKhand reactions could be effectively carried
out in a photochemical flow microreactor in highefficiency
and good productivity.
(7) (a) Smit, W. A.; Gybin, A. S.; Shashkov, A. S.; Strychkov, Y. T.;
Kyzmina, L. G.; Mikaelian, G. S.; Caple, R.; Swanson, E. D. Tetra-
hedron Lett. 1986, 27, 1241. (b) Simonian, S. O.; Smit, W. A.; Gybin,
A. S.; Shashkov, A. S.; Mikaelian, G. S.; Tarasov, V. A.; Ibragimov, I. I.;
Caple, R.; Froen, D. E. Tetrahedron Lett. 1986, 27, 1245. (c) Smit, W. A.;
Simonyan, S. O.; Tarasov, V. A.; Mikaelian, G. S.; Gybin, A. S.;
Ibragimov, I. I.; Caple, R.; Froen, D.; Kreager, A. Synthesis 1989,
472. (d) Smit, W. A.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A.
Tetrahedron Lett. 1989, 30, 4021.
(8) (a) Brown, S. W. J. Chem. Soc., Perkin Trans. 1 1990, 1205.
(b) Pagenkopf, B. L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285.
(c) Coleman, A. C.; Long, C.; Meetsma, A.; Feringa, B. L.; Browne,
W. R.; Pryce, M. T. Dalton Trans. 2009, 7885.
(12) For reviews on photochemistry conducted in flow microreactors,
€
see: (a) Oelgemoller, M. Chem. Eng. Technol. 2012, 35, 1144. (b) Shvydkiv,
€
O.; Oelgemoller, M. In CRC Handbook of Organic Photochemistry and
€
Photobiology, 3rd ed.; Griesbeck, A. G., Oelgemoller, M., Ghetti, F., Eds.; CRC
€
Press: Boca Raton, FL, 2012; Chapter 3, Vol. 1, p 49. (c) Oelgemoller, M.;
€
Shvydkiv, O. Molecules 2011, 16, 7522. (d) Coyle, E. E.; Oelgemoller, M.
(9) For reviews on photochemical organic synthesis, see: (a) Hand-
book of Synthetic Photochemistry; Albini, A., Fagnoni, M., Eds.; Wiley-
VCH: Weinhheim, 2009. (b) CRC Handbook of Organic Photochemistry
and Photobiology, 2nd ed.; Horspool, W. M., Lenci, F., Eds.; CRC Press:
Boca Raton, FL, 2003. (c) Photochemical Synthesis (Best Synthetic
Methods); Ninomiya, I., Naito, T., Eds.; Academic Press: London, 1989.
(d) Photochemistry in Organic Synthesis; Coyle, J. D., Ed.; CRC Press:
London, 1987; Special Publication No. 57.
(10) For reviews on microreactor: (a) Microreactors in Organic Synth-
esis and Catalysis; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2008. (b) Yoshida, J.
Flash Chemistry Fast Organic Synthesis in Microsystems; Wiley:
Chichester, 2008. (c) Micro Precess Engineering; Hessel, V., Renken, A.,
Schouten, J. C., Yoshida, J., Eds.; Wiley-Blackwell: Chichester, 2009. (d) Micro
Reaction Technology in Organic Synthesis; Watts, P., Wiles, C., Eds.; CRC
Press: New York, 2011. (e) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I.
Synlett 2008, 151. (f) Yoshida, J.; Nagaki, A.; Yamada, T. Chem.;Eur. J.
2008, 14, 7450. (g) McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal. Chem.
2010, 3, 19. (h) Yoshida, J. Chem. Rec. 2010, 10, 332. (i) Razzaq, T.; Kappe,
C. O. Chem.;Asian J. 2010, 5, 1274. (j) Yoshida, J.; Kim, H.; Nagaki, A.
ChemSusChem. 2011, 4, 331.
(11) For our recent selected examples, see: (a) Usutani, H.; Tomida,
Y.; Nagaki, A.; Okamoto, H.; Nokami, T.; Yoshida, J. J. Am. Chem.
Soc. 2007, 129, 3046. (b) Nagaki, A.; Takabayashi, N.; Tomida, Y.;
Yoshida, J. Org. Lett. 2008, 10, 3937. (c) Nagaki, A.; Takizawa, E.;
Yoshida, J. J. Am. Chem. Soc. 2009, 131, 1654. (d) Nagaki, A.;
Kenmoku, A.; Moriwaki, Y.; Hayashi, A.; Yoshida, J. Angew. Chem.,
Int. Ed. 2010, 49, 7543. (e) Tomida, Y.; Nagaki, A.; Yoshida, J. J. Am.
Chem. Soc. 2011, 133, 3744. (f) Kim, H.; Nagaki, A.; Yoshida, J. Nat.
Commun. 2011, 2, 264. (g) Nagaki, A.; Matsuo, C.; Kim, S.; Saito, K.;
Miyazaki, A.; Yoshida, J. Angew. Chem., Int. Ed. 2012, 51, 3245.
(h) Nagaki, A.; Uesugi, Y.; Kim, H.; Yoshida, J. Chem.;Asian J.
2013, 8, 705.
Photochem. Photobiol. Sci. 2008, 7, 1313. (e) Matsushita, Y.; Ichimura, T.;
Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T.
Pure Appl. Chem. 2007, 79, 1959.
(13) For selected examples of photochemical reactions in flow micro-
reactor systems, see: (a) Lu, H.; Schmidt, M. A.; Jensen, K. F. Lab Chip
2001, 1, 22. (b) Ueno, K.; Kitagawa, F.; Kitamura, N. Lab Chip 2002, 2,
231. (c) Fukuyama, T.; Hino, Y.; Kamata, N.; Ryu, I. Chem. Lett. 2004,
33, 1430. (d) Maeda, H.; Mukae, H.; Mizuno, K. Chem. Lett. 2005, 34,
66. (e) Mukae, H.; Maeda, H.; Nashihara, S.; Mizuno, K. Bull. Chem.
Soc. Jpn. 2007, 80, 1157. (f) Tsutsumi, K.; Terao, K.; Yamaguchi, H.;
Yoshimura, S.; Morimoto, T.; Kakiuchi, K.; Fukuyama, T.; Ryu, I.
Chem. Lett. 2010, 39, 828. (g) Horie, T.; Motoshige, S.; Tanaka, T.;
Matsushita, Y.; Ichimura, T.; Yoshida, J. Org. Process Res. Dev. 2010,
14, 405. (h) Fuse, S.; Tanabe, N.; Yoshida, M.; Yoshida, H.; Doi, T.;
Takahashi, T. Chem. Commun. 2010, 46, 8722. (i) Shvydkiv, O.;
€
Gallagher, S.; Nolan, K.; Oelgemoller, M. Org. Lett. 2010, 12, 5170.
(j) Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.;
Pan, J.; Djuric, S. Tetrahedron Lett. 2010, 51, 4007. (k) Fukuyama, T.;
ꢀ
Kajihara, Y.; Hino, Y.; Ryu, I. J. Flow Chem. 2011, 1, 40. (l) Levesque,
F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51, 1706. (m) Tucker,
J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Angew. Chem., Int.
Ed. 2012, 51, 4144. (n) Neumann, M.; Zeitler, K. Org. Lett. 2012, 14,
2658. (o) Yavorskyy, A.; Shvydkiv, O.; Hoffmann, N.; Nolan, K.;
€
Oelgemoller, M. Org. Lett. 2012, 14, 4342. (p) Anderson, B. G.; Bauta,
W. E.; Cantrell, W. R., Jr. Org. Process Res. Dev. 2012, 16, 967. (q)
€
Nettekoven, M.; Pullmann, B.; Martin, R. E.; Wechsler, D. Tetrahedron
Lett. 2012, 53, 1363. (r) Nguyen, J. D.; Reiss, B.; Dai, C.; Stephenson,
C. R. J. Chem. Commun. 2013, 49, 4352. (s) Zhang, Y.; Blackman, M. L.;
Leduc, A. B.; Jamison, T. F. Angew. Chem., Int. Ed. 2013, 52, 4251.
(14) For examples of continuous photochemical activations of metal
complexes, see: (a) Gutierrez, A. C.; Jamison, T. F. Org. Lett. 2011, 13,
6414. (b) Gutierrez, A. C.; Jamison, T. F. J. Flow Chem. 2011, 1, 24.
Org. Lett., Vol. 15, No. 10, 2013
2399