Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Based on the above observations and previous reports8, a
tentative reaction mechanism is proposed (Scheme 4). First, a
cationic rhodium species is produced by chloride abstraction with
AgSbF6. Then, an oxime-directed ortho C−H rhodation of 8, which is
generated by Zn(OAc)2-mediated intramolecular Friedel–Crafts-type
imidoylation of N-methoxy benzimidoyl chlorines 4a, delivers a five-
membered rhodacycle species IM1. Following migratory insertion of
the alkyne 2a delivers rhodacycle IM3, which then undergoes a
redox-neutral process to furnish the desired product 5a with the re-
lease of rhodium catalyst for the next catalytic cycle.
1
DOI: 10.1039/C9CC03400E
21, 437; (c) J. Stanslas, D. J. Hagan, M. J. Ellis, C. Turner, J.
Carmichael, W. Ward, T. R. Hammonds and M. F. G. Stevens,
J. Med. Chem., 2000, 43, 1563; (d) L. Bouffier, R. Dinica, J.
Debray, P. Dumy and M. Demeunynck, Bioorg. Med. Chem.
Lett., 2009, 19, 4836; (e) J. R. De la Fuente, C. Aliaga, C.
Poblete, G. Zapata, C. Jullian, C. Saitz, A. Cañete, G. Kciuk, E.
Sobarzo-Sanchez and K. J. Bobrowski, Phys. Chem. A, 2009,
113, 7737; (f) J. Deguchi, T. Hirahara, S. Oshimi, Y. Hirasawa,
W. Ekasari, O. Shirota, T. Honda, and H. Morita, Org. Lett.,
2011, 13, 4344; (g) V. Castro-Castillo, C. Suárez-Rozas, A.
Pabón, E. G. Pérez, B. K. Cassels and S. Blair, Bioorg. Med.
Chem. Lett., 2013, 23, 327; (h) A. R. O. Cousins, D. Ritson, P.
Sharma, M. F. G. Stevens, J. E. Moses and M. S Searle, Chem.
Commun., 2014, 50, 15202; (i) A. Rizzo, S. Iachettini, P. Zizza,
C. Cingolani, M. Porru, S. Artuso, M. Stevens, M.
Hummersone, A. Biroccio, E. Salvati and C. Leonetti, J. Exp.
Clin. Cancer Res., 2014, 33, 81; (j) Z.-F. Chen, Q.-P. Qin, J.-L.
Qin, Y.-C. Liu, K.-B. Huang, Y.-L. Li, T. Meng, G.-H. Zhang, Y.
Peng, X.-J. Luo and H. Liang, J. Med. Chem., 2015, 58, 2159.
J. L. Kristensen, P. Vedsø and M. Begtrup, J. Org. Chem., 2003,
68, 4091.
[Cp*RhCl2]2
4a
intramolecular
Friedel-Crafts
imidoylation
AgSbF6
AgCl
5a + MeOH
Zn(OAc)2•2H2O
Cp*Rh(SbF6)2
OMe
H
H
Cp*
Rh
F
N
N
Ph
SbF6
MeO
F
Ph
N
2
3
H
Me
8
N
Y.-P. Li, F.-X. Ning, M.-B. Yang, Y.-C. Li, M.-H. Nie, T.-M. Ou, J.-
H. Tan, S.-L. Huang, D. Li, L.-Q. Gu and Z.-S. Huang, Eur. J. Med.
Chem., 2011, 46, 1572.
IM3 Me
Cp*
SbF6
MeO
F
Rh
4
(a) T. Satoh and M. Miura, Chem. —Eur. J. 2010, 16, 11212; (b)
P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev.,
2012, 112, 5879; (c) Y. Yang, K. Li, Y. Cheng, D. Wan, M. Li and
J. You, Chem. Commun., 2016, 52, 2872; (d) M. Gulías and J. L.
Mascareñas, Angew. Chem., Int. Ed., 2016, 55, 11000; (e) S.
Prakash, R. Kuppusamy and C.-H. Cheng, ChemCatChem.,
2018, 10, 683; (f) G. Duarah, P. P. Kaishap, T. Begum and S.
Gogoi, Adv. Synth. Catal., 2019, 361, 654.
N
Ph
migratory
insertion
SbF6
Cp*
MeO
F
Ph
Rh
N
N
IM1
Me
N
Ph
Ph
IM2 Me
5
(a) G. Zhang, L. Yang, Y. Wang, Y. Xie and H. Huang, J. Am.
Chem. Soc., 2013, 135, 8850; (b) S. Warratz, C. Kornhaaβ, A.
Cajaraville, B. Niepötter, D. Stalke and L. Ackermann, Angew.
Chem., Int. Ed., 2015, 54, 5513; (c) S. Prakash, K. Muralirajan
and C.-H. Cheng, Angew. Chem., Int. Ed., 2016, 55, 1844; (d) X.
Xu, H. Zhao, J. Xu, C. Chen, Y. Pan, Z. Luo, Z. Zhang, H. Li and L.
Xu, Org. Lett., 2018, 20, 3843; (e) J. Yin and J. You, Angew.
Chem., Int. Ed., 2019, 58, 302; (f) A. Obata, A. Sasagawa, K.
Yamazaki, Y. Ano and N. Chatani, Chem. Sci., 2019, 10, 3242.
(a) J. Mo, L. Wang, Y. Liu and X. Cui, Synthesis, 2015, 47, 439;
(b) L. Zheng and R. Hua, Chem. Rec., 2018, 18, 556; (c) B. Sun,
T. Yoshino, M. Kanai and S. Matsunaga, Angew. Chem., Int.
Ed., 2015 ,54, 12968; (d) Z. Zhou, G. Liu, Y. Chen and X. Lu, Adv.
Synth. Catal., 2015, 357, 2944; (e) K.-H. He, W.-D. Zhang, M.-
Y. Yang, K.-L. Tang, M. Qu, Y.-S. Ding and Y. Li, Org. Lett., 2016,
18, 2840; (f) A. Lerchen, S. Vásquez-Céspedes and F. Glorius,
Angew. Chem., Int. Ed., 2016, 55, 3208; (g) Q. Lu, S. Greßies,
S. Cembellín, F. J. R. Klauck, C. G. Daniliuc and F. Glorius,
Angew. Chem., Int. Ed., 2017, 56, 12778; (h) Y.-F. Liang, R.
Steinbock, A. Münch, D. Stalke and L. Ackermann, Angew.
Chem., Int. Ed., 2018, 57, 5384.
(a) W. Ma, R. Mei, G. Tenti and L. Ackermann, Chem. —Eur. J.,
2014, 20, 15248; (b) E. Tan, O. Quinonero, M. E. Orbe and A.
M. Echavarren, ACS Catal., 2018, 8, 2166; (c) Y. Shi, L. Zhang,
J. Lan, M. Zhang, F. Zhou, W. Wei and J. You, Angew. Chem.,
Int. Ed., 2018, 57, 9108.
(a) G. Song and X. Li, Acc. Chem. Res., 2015, 48, 1007; (b) N.
Guimond, S. I. Gorelsky and K. Fagnou, J. Am. Chem. Soc.,
2011, 133, 6449; (c) M. Sen, D. Kalsi and B. Sundararaju, Chem.
—Eur. J., 2015, 21, 15529; (d) J. Tang, S. Li, Z. Liu, Y. Zhao, Z.
She, V. D. Kadam, G. Gao, J. Lan and J. You, Org. Lett., 2017,
19, 604.
Scheme 4. Plausible mechanistic pathway.
In summary, we have developed a general, concise and efficient
protocol for the synthesis of 7H-dibenzo[de,h]quinoline analogues
via a cascade Lewis acid-promoted intramolecular Friedel–Crafts-
type imidoylation and Rh(III)-catalyzed C–H activation/annulation of
benzimidoyl chlorides with alkynes. This reaction features a broad
substrate scope, good functional group tolerance and excellent
regioselectivity, and could enable rapid scaffold diversification. A
variety of chromeno[2,3,4-ij]isoquinoline, 7-methyl-7H-pyrido[4,3,2-
kl]acridine and 7H-dibenzo[de,h]quinolin-7-one could be obtained in
this cascade reaction. Studies on the application of this reaction to
the exploitation of bioactive molecules are ongoing in our laboratory.
We thank the National Natural Science Foundation of China (Nos.
21432005 and 21502123) for financial support. We also thank the
Open Fund of the Key Laboratory of Functional Molecular
Engineering of Guangdong Province (2016kf05, South China
University of Technology) and the Comprehensive Training Platform
Specialized Laboratory, College of Chemistry, Sichuan University.
6
7
8
Conflicts of interest
There are no conflicts to declare.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins