FULL PAPER
[5]
a) For a minireview, see: O. Roubeau, Chem. Eur. J. 2012, 18,
15230–15244; b) M. M. Dîrtu, C. Neuhausen, A. D. Naik, A.
Rotaru, L. Spinu, Y. Garcia, Inorg. Chem. 2010, 49, 5723–5736
and references cited therein; c) O. Roubeau, M. Castro, R. Bur-
riel, J. G. Haasnoot, J. Reedijk, J. Phys. Chem. B 2011, 115,
3003–3012 and references cited therein.
N 26.38; found C 45.8, H 3.3, N 26.8. IR: ν = 3153, 3113, 3094,
˜
2978, 2122, 2109, 1612, 1601, 1576, 1519, 1515, 1494, 1476, 1453,
1311, 1290, 1226, 1173, 1053, 1028, 967, 882, 818, 773, 760, 749,
700, 692, 685, 624, 592, 510, 492, 464 cm–1.
Structure Determination: Owing to the sensitivity of crystals of 2
and 3, single-crystal diffraction experiments were performed by
mounting crystals directly onto the goniometer with a cold N2
stream by using the oil-drop method to reduce the loss of lattice
solvent and the ensuing deterioration of crystallinity as much as
possible. Data for compounds 2·3.5MeOH at 100 and 250 K and
3·3.5MeOH at 100 K were collected with a Bruker APEX II CCD
diffractometer at the Advanced Light Source beamline 11.3.1 at
Lawrence Berkeley National Laboratory from a silicon 111 mono-
chromator (λ = 0.7749 Å). Data reduction and absorption correc-
tions were performed with SAINT and SADABS,[31] respectively.
Data for compound 2·5MeOH at 150 and 2 at 296 K were obtained
with an Oxford Diffraction Excalibur diffractometer with enhanced
Mo-Kα radiation (λ = 0.71073 Å) at the X-ray diffraction and
Fluorescence Analysis Service of the University of Zaragoza. Cell
refinement, data reduction and absorption corrections were per-
formed with the CrysAlisPro suite.[32] All structures were solved
with SIR92[33] and refined on F2 with the SHELXTL suite.[34] Crys-
tal data collection and refinement parameters are given in Table S1.
CCDC-901398 (for 2·3.5MeOH, 100 K), -901399 (for 2·3.5MeOH,
250 K), -901400 (for 2·5MeOH, 150 K), -901401 (for 2, 296 K)
and -901402 (for 3·3.5MeOH, 100 K) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
[6]
[7]
A. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem.
Soc. Rev. 2011, 40, 3313–3335.
a) O. Kahn, J. Kröber, C. Jay, Adv. Mater. 1992, 4, 718–728; b)
O. Kahn, E. Codjovi, Phil. Trans. R. Soc. London A 1996, 354,
359–379; c) O. Kahn, C. J. Martinez, Science 1998, 279, 44–48.
a) J-F. Létard, P. Guionneau, N. Daro, Nanoparticles of a spin
transition compound, WO 2007/065996, 2007; b) T. Forestier, S.
Mornet, N. Daro, T. Nishihara, S.-I. Mouri, K. Tanaka, O.
Fouché, E. Freysz, J.-F. Létard, Chem. Commun. 2008, 4327–
4329; E. Coronado, J. R. Galán-Mascarós, M. Monrabal-Cap-
illa, J. García-Martínez, P. Pardo-Ibáñez, Adv. Mater. 2007, 19,
1359–1361.
a) O. Roubeau, A. Colin, V. Schmitt, R. Clérac, Angew. Chem.
2004, 116, 3345; Angew. Chem. Int. Ed. 2004, 43, 3283–3286;
b) T. Fujigaya, D.-L. Jiang, T. Aida, Chem. Asian J. 2007, 2,
106–113; c) M. Rubio, D. López, Eur. Polym. J. 2009, 45, 3339–
3346; d) P. Grondin, O. Roubeau, M. Castro, H. Saadaoui, A.
Colin, R. Clérac, Langmuir 2010, 26, 5184–5195.
a) O. Roubeau, B. Agricole, R. Clérac, S. Ravaine, J. Phys.
Chem. B 2004, 108, 15110–15116; b) O. Roubeau, E. Nativi-
dad, B. Agricole, S. Ravaine, Langmuir 2007, 23, 3110–3117; c)
C. Thibault, G. Molnár, L. Salmon, A. Bousseksou, C. Vieu,
Langmuir 2010, 26, 1557–1560.
a) T. Fujigaya, D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 2005,
127, 5484–5489; b) P. Sonar, C. M. Grunert, Y.-L. Wie, J. Kusz,
P. Gütlich, A. D. Schlüter, Eur. J. Inorg. Chem. 2008, 1613–
1622; c) Y.-L. Wie, P. Sonar, M. Grunert, J. Kusz, A. D.
Schlüter, P. Gütlich, Eur. J. Inorg. Chem. 2010, 3930–3941.
R. N. Muller, L. van der Elst, S. Laurent, J. Am. Chem. Soc.
2003, 125, 8405–8407.
[8]
[9]
[10]
[11]
Supporting Information (see footnote on the first page of this arti-
cle): Crystallographic data for 2·3.5MeOH at 100 and 250 K,
2·5MeOH at 150 K, 2 at 296 K and 3·3.5MeOH at 100 K
(Table S1), relevant structural parameters of the dinuclear complex
and intermolecular interactions (Tables S2–S7). IR spectra of 2–5
(Figure S1), views of the crystal packing of 2·3.5MeOH (Fig-
ures S2–S4), view of the crystal packing of 2 (Figure S5), view of
the dinuclear complex in the structure of 3·3.5MeOH (Figure S6).
[12]
[13]
a) P. Grondin, D. Siretanu, O. Roubeau, M.-F. Achard, R.
Clérac, Inorg. Chem. 2012, 51, 5417–5426; b) A. B. Gaspar, M.
Seredyuk, P. Gütlich, Coord. Chem. Rev. 2009, 253, 2399–2413.
F. Prins, M. Monrabal-Capilla, E. A. Osorio, E. Coronado,
H. S. J. van der Zant, Adv. Mater. 2011, 23, 1545–1549.
G. Félix, K. Abdul-Kader, T. Mahfoud, I. A. Gural’skiy, W.
Nicolazzi, L. Salmon, G. Molnár, A. Bousseksou, J. Am.
Chem. Soc. 2011, 133, 15342–15345.
[14]
[15]
Acknowledgments
[16]
[17]
A. Grosjean, N. Daro, B. Kauffman, A. Kaiba, J.-F. Létard, P.
Guionneau, Chem. Commun. 2011, 47, 12382–12384.
P. G. acknowledges the Institució Catalana de Recerca i Estudis
Avançats (ICREA). P. G. and O. R. are grateful to the Spanish
Ministerio de Economía y Competitividad (MINECO) for funding
(Projects CTQ2011-27929-C02-01 and MAT2011-24284). The Ad-
vanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences of the U. S. Department of Energy
under contract no. DE-AC02-05CH11231.
a) V. P. Sinditskii, V. I. Sokol, A. E. Fogelzang, M. D. Dutov,
V. V. Serushkin, M. A. Porai-Koshits, B. S. Svetlov, Zh. Neorg.
Khim. 1987, 32, 1950; b) Y. Garcia, P. J. van Koningsbruggen,
G. Bravic, P. Guionneau, D. Chasseau, G. Luca Cascarano, J.
Moscovici, K. Lambert, A. Michalowicz, O. Kahn, Inorg.
Chem. 1997, 36, 6357–6365; c) K. Drabent, Z. Ciunik, Chem.
Commun. 2001, 1254–1255; d) Y. Garcia, P. J. van Konings-
bruggen, G. Bravic, D. Chasseau, O. Kahn, Eur. J. Inorg. Chem.
2003, 356–362; e) M. M. Dîrtu, A. Rotaru, D. Gillard, J. Lin-
ares, E. Codjovi, B. Tinant, Y. Garcia, Inorg. Chem. 2009, 48,
7838–7852; f) M. M. Dîrtu, C. Neuhausen, A. D. Naik, A. Rot-
aru, L. Spinu, Y. Garcia, Inorg. Chem. 2010, 49, 5723–5736.
a) G. Vos, R. A. Le Fêbre, R. A. G. de Graaff, J. G. Haasnoot,
J. Reedijk, J. Am. Chem. Soc. 1983, 105, 1682; b) G. Vos,
R. A. G. de Graaff, J. G. Haasnoot, A. M. van der Kraan, P.
de Vaal, J. Reedijk, Inorg. Chem. 1984, 23, 2905–2910; c) M.
Thomann, O. Kahn, J. Guilhem, F. Varret, Inorg. Chem. 1994,
33, 6029–6037; d) J. J. A. Kolnaar, G. van Dijk, H. Kooijman,
A. K. Spek, V. G. Ksonofontov, P. Gütlich, J. G. Haasnoot, J.
Reedijk, Inorg. Chem. 1997, 36, 2433–2440; e) Y. Garcia, P.
Guionneau, G. Bravic, D. Chasseau, J. A. K. Howard, O.
Kahn, V. Ksenofontov, S. Reiman, P. Gütlich, Eur. J. Inorg.
Chem. 2000, 1531–1538; f) M. B. Bushuev, L. G. Lavrenova,
Y. G. Shvedenkov, A. V. Virovets, L. A. Sheludyakova, S. V. La-
[1] a) J. A. Real, A. B. Gaspar, M. C. Muñoz, Dalton Trans. 2005,
2062–2079; b) P. Gamez, J. S. Costa, M. Quesada, G. Aromí,
Dalton Trans. 2009, 7845–7853; c) for a complete overview on
spin-crossover systems, see: “Spin Crossover in Transition
Metal Compounds I, II and III”, P. Gütlich, H. A. Goodwin,
Top. Curr. Chem. 2004, 233, 234 and 235.
[2] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. 1994, 106,
2109; Angew. Chem. Int. Ed. Engl. 1994, 33, 2024–2054.
[3] P. Gütlich, Y. Garcia, H. A. Goodwin, Chem. Soc. Rev. 2000,
29, 419–427.
[4] a) G. Aromí, L. A. Barrios, O. Roubeau, P. Gamez, Coord.
Chem. Rev. 2011, 255, 485–546; b) J. G. Haasnoot, Coord.
Chem. Rev. 2000, 200–202, 131–185; c) Y. Garcia, V. Niel,
M. C. Muñoz, J. A. Real, Top. Curr. Chem. 2004, 233, 229–257;
d) P. J. van Koningsbruggen, Top. Curr. Chem. 2004, 233, 123–
149.
[18]
Eur. J. Inorg. Chem. 2013, 934–942
941
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim