Organic Letters
Letter
Notes
Scheme 4. Transformation of Reactive cABs
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work has been supported by the German Research
Foundation (DFG) within the Collaborative Research Center
677 “Function by Switching” (subproject C14). N.E. would
like to thank the Philipp Schwartz Initiative of the Alexander
von Humboldt foundation for their support. This research has
been supported by the Institutional Strategy of the University
of Bremen, funded by the German Excellence Initiative.
REFERENCES
a
■
Pd2(dba)3 = Tris(dibenzylideneacetone)dipalladium(0).
́
(1) Bleger, D.; Hecht, S. Angew. Chem., Int. Ed. 2015, 54, 11338−
11349.
Absorption maxima and photostationary states were deter-
mined after irradiation, with 385 and 565 nm wavelength light,
of 1a−1u in acetonitrile or DMSO. No significant deviations
from parent cAB were found except for the products 1e, 1q, 1r,
and 1o where the electronic coupling between the substituent
and the aromatic system presumably causes rapid thermal
relaxation of the (E) isomers.28
(2) Siewertsen, R.; Neumann, H.; Buchheim-Stehn, B.; Herges, R.;
̈
Nather, C.; Renth, F.; Temps, F. J. Am. Chem. Soc. 2009, 131, 15594−
15595.
̈
(3) Carstensen, O.; Sielk, J.; Schonborn, J. B.; Granucci, G.; Hartke,
B. J. Chem. Phys. 2010, 133, 124305.
̈
(4) Bockmann, M.; Doltsinis, N. L.; Marx, D. J. Chem. Phys. 2012,
137, 22A505.
(5) Liu, L.; Wang, Y.; Fang, Q. J. Chem. Phys. 2017, 146, 064308.
̈
(6) Siewertsen, R.; Schonborn, J. B.; Hartke, B.; Renth, F.; Temps, F.
In conclusion, we show a new general route to function-
alized ethylene bridged azobenzenes carrying a wide variety of
functional groups. Additional derivatives could be prepared, in
which the diazo group was flanked by the aromatic
heterocycles thiophene and pyridine. Our strategy for the
establishment of the diazocine ring consisted of building the
ethylene bridge from 2-bromo benzyl bromides and inserting a
hydrazine unit via cascade C−N coupling reactions. This
method also provided products which could be further
transformed into useful building blocks that may be used in
materials chemistry,29−32 in which higher amounts of ethylene
bridged azobenzenes are required.
Phys. Chem. Chem. Phys. 2011, 13, 1054−1063.
(7) Jun, M.; Joshi, D. K.; Yalagala, R. S.; Vanloon, J.; Simionescu, R.;
Lough, A. J.; Gordon, H. L.; Yan, H. ChemistrySelect 2018, 3, 2697−
2701.
(8) Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev. 2012, 41,
1809−1825.
(9) Samanta, S.; Qin, C.; Lough, A. J.; Woolley, G. A. Angew. Chem.,
Int. Ed. 2012, 51, 6452−6455.
(10) Li, S.; Han, G.; Zhang, W. Macromolecules 2018, 51, 4290−
4297.
̈
̈
(11) Low, R.; Rusch, T.; Rohricht, F.; Magnussen, O.; Herges, R.
Beilstein J. Org. Chem. 2019, 15, 1485−1490.
(12) Eljabu, F.; Dhruval, J.; Yan, H. Bioorg. Med. Chem. Lett. 2015,
25, 5594−5596.
ASSOCIATED CONTENT
* Supporting Information
(13) Moormann, W.; Langbehn, D.; Herges, R. Synthesis 2017, 49,
3471−3475.
■
sı
(14) Enyedy, I. J.; Huang, Y.; Long, Y. Q.; Roller, P. P.; Yang, D.;
Wang, S.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; et al. J. Med. Chem.
2001, 44, 4313−4324.
The Supporting Information is available free of charge at
Full experimental details, including synthetic procedures
and characterization details (PDF)
(15) Paudler, W. W.; Zeiler, A. G. J. Org. Chem. 1969, 34, 3237−
3239.
̀
́
́
(16) Cabre, G.; Garrido-Charles, A.; Gonzalez-Lafont, A.;
Moormann, W.; Langbehn, D.; Egea, D.; Lluch, J. M.; Herges, R.;
AUTHOR INFORMATION
Corresponding Author
■
́
́
Alibes, R.; Busque, F.; et al. Org. Lett. 2019, 21, 3780−3784.
(17) Maier, M. S.; Hull, K.; Reynders, M.; Matsuura, B. S.; Leippe,
̈
̈
P.; Ko, T.; Schaffer, L.; Trauner, D. J. Am. Chem. Soc. 2019, 141,
17295−17304.
Anne Staubitz − Otto-Diels-Institute for Organic Chemistry,
University of Kiel, 24098 Kiel, Germany; Institute for Organic
and Analytical Chemistry, University of Bremen, 28359 Bremen,
Germany; University of Bremen, MAPEX Center for Materials
(18) Ball, C. J.; Gilmore, J.; Willis, M. C. Angew. Chem., Int. Ed.
2012, 51, 5718−5722.
(19) Martín, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2006, 45, 7079−7082.
(20) Kim, K. Y.; Shin, J. T.; Lee, K. S.; Cho, C. G. Tetrahedron Lett.
2004, 45, 117−120.
Authors
̈
(21) Jensen, J.; Tejler, J.; Warnmark, K. J. Org. Chem. 2002, 67,
Shuo Li − Otto-Diels-Institute for Organic Chemistry, University
Nadi Eleya − Institute for Organic and Analytical Chemistry,
University of Bremen, 28359 Bremen, Germany; orcid.org/
6008−6014.
(22) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.
(23) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am.
Chem. Soc. 2001, 123, 7727−7729.
(24) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 7421−7428.
(25) Iyoda, M.; Sakaitan, M.; Otsuka, H.; Oda, M. Chem. Lett. 1985,
14, 127−130.
Complete contact information is available at:
(26) Zhao, P.; Beaudry, C. M. Org. Lett. 2013, 15, 402−405.
C
Org. Lett. XXXX, XXX, XXX−XXX