Communication
ChemComm
3 (a) L. S. Povarov, Russ. Chem. Rev., 1967, 36, 656–670; (b) V. V.
Kouznetsov, Tetrahedron, 2009, 65, 2721–2750; (c) D. Bello,
´
R. Ramon and R. Lavilla, Curr. Org. Chem., 2010, 14, 332–356;
(d) M. A. McCarrick, Y. D. Wu and K. N. Houk, J. Org. Chem.,
1993, 58, 3330–3343; (e) A. Whiting and C. M. Windsor, Tetrahedron,
1998, 54, 6035–6050.
4 Povarov reactions catalyzed by acid catalysts, see selected examples:
(a) H. Xu, S. J. Zuend, M. G. Woll, Y. Tao and E. N. Jacobson, Science,
2010, 327, 986–990; (b) T. Akiyama, H. Morita and K. Fuchibe, J. Am.
Chem. Soc., 2006, 128, 13070–13071; (c) H. Liu, G. Dagousset,
G. Masson, P. Retailleau and J. Zhu, J. Am. Chem. Soc., 2009, 131,
4598–4599; (d) G. Dagousset, J. Zhu and G. Masson, J. Am. Chem. Soc.,
2011, 133, 14804–148013; (e) H. Ishitani and S. Kobayashi, Tetra-
hedron Lett., 1996, 37, 7357–7360; ( f ) G. Bergonzini, L. Gramigna,
A. Mazzanti, M. Fochi, L. Bernardi and A. Ricci, Chem. Commun.,
2010, 46, 327–329; (g) L. He, M. Bekkaye, P. Retailleau and G. Masson,
Org. Lett., 2012, 14, 3158–3161.
5 (a) C. Min, A. Asnchawala and D. Seidel, Org. Lett., 2014, 16, 2756–2759;
(b) L. Huang, X. Zhang and Y. Zhang, Org. Lett., 2009, 11, 3730–3733;
(c) S. Murata, M. Miura and M. Nomura, J. Org. Chem., 1989, 54,
4700–4702; (d) S.-I. Murahashi, T. Naota, N. Miyaguchi and T. Nakato,
Tetrahedron Lett., 1992, 33, 6991–6994.
Scheme 2 A postulated mechanism.
6 For Cu-catalyzed C–H bond functionalizations; see selected reviews:
(a) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem., Int. Ed., 2014,
53, 74–100; (b) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew.
Chem., Int. Ed., 2011, 50, 11062–11087; (c) M. Klussmann and
D. Sureshkumar, Synthesis, 2011, 353–369; (d) C. Liu, H. Zhang,
W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780–1824; (e) C. Zhang,
C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3464–3484.
7 We noted a recent work of Sun and coworkers involving photo-
initiated oxidation of THF solvent under air to generate 2,3-
dihydrofuran species; but the other reactant is still a reactive
heterodiene. The product yields were moderate (40–50%) for most
instances using THF as a nucleophile. H. Guo, C. Zhu, J. Li, G. Xu
and J. Sun, Adv. Synth. Catal., 2014, 356, 2801–2806.
8 The reactions of N,N-dimethylaniline of THF with Pd(OAc)2 (0.5 equiv.) in
the absence of oxidants were reported to give distinct products in low
yields for most aniline substrates; see ref. 8a. (a) T. Sakakibara,
S. Karasumara and I. Kawano, J. Am. Chem. Soc., 1985, 107, 6417–6419;
(b) J. Zhang and C.-J. Li, J. Org. Chem., 2002, 67, 3969–3971; (c) Y. Lang,
F. E. S. Souza, X. Xu, N. J. Taylor, A. Assoud and R. Rodrigo, J. Org. Chem.,
2009, 74, 5429–5439; (d) Y. Zhao, J. Q. L. A. Ang, A. W. T. Ng and
Y.-Y. Yeung, RSC Adv., 2013, 3, 19765–19768.
its mechanism likely involves the generation of the THF radical
B and X2Cu(III)OH (X = OTf), which conduct a mutual SET
process to give lactol ultimately. TBHP in a small proportion
can also generate the t-BuOꢀ radical via thermal decomposition
(eqn (4))11 to assist the formation of a THF radical (B). One
advantage of water solvent is to provide HOTf to assist the
conversion of XCuOH to the initial CuX2; this Brønsted acid is
produced from the hydrolysis of iminium A or oxonium inter-
mediate C. The hydrated forms of aldehydes also impede their
reactions with the t-BuOꢀ radical to form carbonyl radicals,
thus quenching the reactions.15
In summary, novel oxidative Povarov reactions between
N-alkyl N-methylanilines and saturated oxa- and thiacyclic
compounds have been described; importantly, these reactions
do not involve [4p]- or [2p]-motifs. The use of cheap alkane-
based substances as four- and two-atom building units is of
mechanistic and practical interest as two inert sp3 C–H bonds
are activated. Our mechanistic study hypothesizes that tertiary
amines are oxidized by Cu(OTf)2/TBHP via two SET processes
whereas THF is oxidized by the same mixture to form the THF
radical initially. We believe that the success of this work will
inspire enthusiasm for employing alkane-based substances for
metal-catalyzed cycloaddition reactions via C–H activation.
9 We have conducted a control experiment to confirm that the
reaction of Cu(s) with TBHP (2 equiv.) in water (90 1C, 24 h) gave
water-soluble Cu complexes in 5% yield. This salt contained Cu in
28 wt% and its 5 mol% Cu loading enabled a cycloaddition of
aniline 2b (1.0 equiv.) with THF (10 equiv.) in water to yield desired
3b in 75% yield (see ESI†).
10 CCDC 1039307 (3f).
11 Thermal decomposition of TBHP without metal catalyst can proceed
at 120 1C whereas the temperature was 90 1C for eqn (1). See: T. He,
L. Zhang, L. Wang and M. Wang, Org. Lett., 2011, 13, 5016–5019.
12 (a) For Povarov reactions using amines, aldehydes and alkenes in
non-aqueous solution, see selected examples: S. Kobayashi and
S. Nagayama, J. Am. Chem. Soc., 1996, 118, 8977–8978; (b) C. Boglio,
Notes and references
´
ˆ
G. Lemiere, B. Hasenknopf, S. Thorimbert, E. Lacote and M. Malacria,
1 (a) M. Lautens, W. Klute and W. Tam, Chem. Rev., 1996, 96, 49–92;
Angew. Chem., Int. Ed., 2006, 45, 3324–3327.
(b) P. A. Wender, V. A. Verma, T. H. Paxton and T. H. Pillow, Acc. 13 For the generation of THF radicals from the M–TBHP system (M = Cu(I),
Chem. Res., 2008, 41, 40–49; (c) P. A. Inglesby and P. A. Evans, Chem.
Soc. Rev., 2010, 39, 2791–2805; (d) N. T. Patil and Y. Yamamoto,
Chem. Rev., 2008, 108, 3395–3442; (e) D. Garayalde and C. Nevado,
Ni(II) and iodide), see recent examples: (a) D. Liu, C. Liu, H. Li and A. Lei,
Chem. Commun., 2014, 50, 3623–3626; (b) L. Zhao, S. Tang, X. Qi, C. Lin,
C. Lin, K. Liu, C. Liu, Y. Lan and A. Lei, Org. Lett., 2014, 16, 3404–3407;
(c) D. Liu, C. Liu, H. Li and A. Lei, Angew. Chem., Int. Ed., 2013, 52,
4453–4456; (d) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and
X. Wan, Chem. – Eur. J., 2011, 17, 4085–4089; (e) L. Dian, S. Wang,
D. Zhang-Negrerie, Y. Du and K. Zhao, Chem. Commun., 2014, 50,
11738–11741; ( f ) S. K. Rout, S. Guin, W. Ali, A. Gogoi and B. K. Patel,
Org. Lett., 2014, 16, 3086–3089.
´
´
ACS Catal., 2012, 2, 1462–1479; ( f ) F. Lopez and J. Mascarenas,
Chem. Soc. Rev., 2014, 43, 2904–2915.
2 (a) L. Ackermann, Acc. Chem. Res., 2014, 47, 281–295; (b) G. Song,
F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651–3678;
(c) F. W. Patureau, J. Wencel-Delord and F. Glorius, Aldrichmica
Acta, 2012, 45, 31–41; (d) D. A. Colby, A. S. Tsai, R. G. Bergman and
J. A. Ellman, Acc. Chem. Res., 2012, 45, 814–825; (e) P. B. Arockiam, 14 The use of Cu(s)/TBHP for the sp3 C–H bond activation of ethers was
C. Bruneau and P. H. Dixueuf, Chem. Rev., 2012, 112, 5879–5918;
( f ) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev.,
recently reported; see: Z. Cui, X. Shang, X.-F. Shao and Z.-Q. Liu,
Chem. Sci., 2012, 3, 2853–2858.
2011, 40, 4740–4761; (g) T. Satoh and M. Miura, Chem. – Eur. J., 15 (a) Z. Liu, J. Zhang, S. Chen. E. Shi, Y. Xu and X. Wan, Angew. Chem.,
2010, 16, 11212–11222; (h) M. C. Haibach, S. Kundu, M. Brookhart
and A. S. Goldman, Acc. Chem. Res., 2012, 45, 947–958.
Int. Ed., 2012, 51, 3231–3235; (b) S.-r. Guo, Y.-q. Yuan and J.-n. Xiang,
Org. Lett., 2013, 15, 4654–4657.
6628 | Chem. Commun., 2015, 51, 6625--6628
This journal is ©The Royal Society of Chemistry 2015