S. Sylvestre, K. Pandiarajan / Spectrochimica Acta Part A 78 (2011) 153–159
159
Table 4
Yields, melting points, elemental analysis and IR stretching frequency of 10–17.
m.p.
(◦C)
Elemental analysis
Calculated (%)
IR stretching frequencies (cm−1
)
Compd.
Yield
(%)
Found (%)
C
N
C
O
NH (pip)
NH (amide)
OH group
C
H
N
C
H
N
10
11
12
13
14
15
16
17
177–179 80
222–224 90
190–192 85
202–204 85
231–234 90
221–224 78
220–221 80
223–224 80
–
–
–
–
6.05
6.34
5.08
–
–
–
8.13
8.02
7.86
–
–
–
–
–
6.09
6.50
5.27
–
–
–
8.35
8.03
7.89
–
1627
1600
1616
1608
1600
1594
1596
1597
1655
1639
1644
1649
1633
1633
1654
1652
3309
3315
3315
3309
3320
3281
3306
3273
3309
3271
3282
3266
3278
3281
3306
3273
3419
3435
3424
3419
3402
3446
3408
3397
72.43
73.60
67.59
–
–
–
73.08
73.42
67.68
–
–
–
–
–
–
–
–
–
–
–
overnight. The reaction mixture was diluted with ether (100 mL)
and treated with conc. HCl (20 mL). The precipitated hydrochloride
was washed with ethanol–ether. The hydrochloride was suspended
in acetone and neutralized with aqueous ammonia. Dilution with
water gave the free base which was recrystallized from ethanol.
References
[1] K. Ramalingam, K.D. Berlin, N. Satyamurthy, R. Sivakumar, J. Org. Chem. 44
(1979) 471–478.
[2] M.U. Hasan, M. Arab, K. Pandiarajan, R. Sekar, D. Marko, Magn. Reson. Chem. 23
(1985) 292–295.
[3] K. Pandiarajan, R.T. Sabapathy Mohan, M.U. Hasan, Magn. Reson. Chem. 24
(1986) 312–316.
[4] T. Ravindran, R. Jeyaraman, M. Singh, R.W. Murray, J. Org. Chem. 56 (1991)
4833–4840.
[5] K. Pandiarajan, R. Sekar, R. Anantharaman, V. Ramalingam, D. Marko, Indian J.
Chem. B 30 (1991) 490–493.
[6] C. Cordier, E. Vauthier, A. Adenier, Y. Lu, A. Massat, A. Cosse-Barbi, Struct. Chem.
15 (2004) 295–307.
4.3.2. 3,3-Dimethyl-2r,6c-diarylpiperidin-4-ones (5–7)
Piperidin-4-ones 5–7 were prepared by condensing ammo-
nium acetate (100 mmol), 3-methyl-2-butanone (100 mmol) and
appropriate substituted benzaldehyde (200 mmol) in ethanol by
following the above mentioned procedure.
[7] M.J.-M. Takac, D.V. Topic, T. Govorcinovic, Acta Pharm. 54 (2004) 163–176.
[8] K. Pandiarajan, T.N. Jegdish, J. Christopher Newton Benny, Indian J. Chem. B 36
(1997) 662–667.
[9] V.V. Syakaev, S.N. Podyachev, B.I. Buzykin, S.K. Latypov, W.D. Habicher, A.I.
Konovalov, J. Mol. Struct. 788 (2006) 55–62.
[10] R.B. Nazarski, J. Phys. Org. Chem. 20 (2007) 422–430.
[11] A. Kolocouris, Tetrahedron Lett. 48 (2007) 2117–2122.
[12] K. Pandiarajan, R.T. Sabapathy Mohan, K. Murugavel, R. Hema, J. Mol. Struct.
875 (2008) 226–235.
4.3.3. 3t-Ethyl-2r,6c-diphenylpiperidin-4-one (8)
This was prepared by condensing ammonium acetate
(100 mmol), pentan-2-one (100 mmol) and benzaldehyde
(200 mmol) in ethanol by following the above mentioned
procedure.
[13] P.J. Coelho, I.C. Fernandes, L.M. Carvalho, Magn. Reson. Chem. 46 (2008)
295–298.
[14] G.S. Singh, T. Pheko, Spectrosc. Lett. 41 (2008) 15–18.
[15] D. Devanathan, K. Pandiarajan, Spectrosc. Lett. 42 (2009) 147–155.
[16] E. Kleinpeter, I. Szatmari, L. Lazar, A. Koch, M. Heydenreich, F. Fulop, Tetrahe-
dron 65 (2009) 8021–8027.
[17] J.A. Bisceglia, M.C. Mollo, L.R. Orelli, J. Mol. Struct. 966 (2010) 79–84.
[18] A. Manimekalai, S. Sivakumar, Spectrochim. Acta A 75 (2010) 113–120.
[19] R.W. Darbeau, Appl. Spectrosc. Rev. 41 (2006) 401–425.
[20] I. Alkorta, J. Elguero, G.S. Denisov, Magn. Reson. Chem. 46 (2008) 599–624.
[21] E.L. Eliel, W.F. Bailey, L.D. Kopp, R.L. Willer, D.M. Grant, R. Bertrand, K.A. Chris-
tensen, D.K. Dalling, M.W. Duch, E. Wenkert, F.M. Schell, D.W. Cochran, J. Am.
Chem. Soc. 97 (1975) 322–330.
[22] H.-J. Schneider, V. Hoppen, J. Org. Chem. 43 (1978) 3866–3873.
[23] K. Pandiarajan, A. Manimekalai, Magn. Reson. Chem. 29 (1991) 904–911.
[24] H.N. Dogan, S. Rollas, H. Erdeniz, IL Farmaco 53 (1998) 462–467.
[25] H.N. Dogan, A. Duran, S. Rollas, G. Sener, M.K. Uysal, D. Gulen, Biorg. Med. Chem.
10 (2002) 2893–2898.
4.3.4. 3t-Isopropyl-2r,6c-diphenylpiperidin-4-one (9)
This was prepared by condensing ammonium acetate
(100 mmol), 4-methylpentan-2-one (100 mmol) and benzalde-
hyde (200 mmol) in ethanol by following the above mentioned
procedure.
4.3.5. 2r,6c-Diarylpiperidin-4-one
(3ꢀ-hydroxy-2ꢀ-naphthoyl)hydrazones (10–17)
Hydrazones 10–17 were synthesized by refluxing a mixture of
piperidin-4-ones (2–9) (25 mmol) and 3-hydroxy-2-naphthoic acid
hydrazide 1 (25 mmol) in methanol (10 mL) containing a few drops
of acetic acid for 1 h. The separated solid was washed with ice-cold
water and was recrystallized from methanol.
The physical data for hydrazones 10–17 are given in Table 4.
[26] A. Duran, H.N. Dogan, S. Rollas, IL Farmaco 57 (2002) 559–564.
[27] H.N. Dogan, A. Duran, S. Rollas, Indian J. Chem.
2307.
[28] H.D. Yin, S.W. Chen, Inorg. Chim. Acta 359 (2006) 3330–3338.
[29] R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Com-
pounds, sixth ed., Wiley, New York, 1998, p. 229.
[30] R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Com-
pounds, sixth ed., Wiley, New York, 1998, p. 234.
[31] K. Pandiarajan, C. Sankar, unpublished results.
[32] T. Ravindran, R. Jeyaraman, Indian J. Chem. B 31 (1992) 677–682.
[34] T. Kavitha, S. Ponnuswamy, V. Mohanraj, S.S. Ilango, M.N. Ponnuswamy, Acta
Crystallogr. E 63 (2007) o3985.
[35] M.N. Nisa, D. Velmurugan, S. Narasimhan, V. Rajagopal, M.-L. Kim, Acta Crys-
tallogr. E 57 (2001) o996.
B 44 (2005) 2301–
Acknowledgements
The authors are thankful to SIF, Indian Institute of Science, Ban-
galore and to SAIF IIT Chennai for recording NMR spectra. Thanks
are due to CECRI, Karaikudi for elemental analysis. One of the
authors (S. Sylvestre) is thankful to UGC for the award of a fellow-
ship.
Appendix A. Supplementary data
[36] C.R. Noller, V. Baliah, J. Am. Chem. Soc. 70 (1948) 3853–3855.
Supplementary data associated with this article can be found, in