Journal of the American Chemical Society
Article
(4) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat.
Rev. Drug Discov. 2002, 1, 493.
(5) O’Hare, T.; Eide, C. A.; Deininger, M. W. Blood 2007, 110, 2242.
(6) Quintas-Cardama, A.; Kantarjian, H.; Cortes, J. Nat. Rev. Drug
Discovery 2007, 6, 834.
(7) Lombardo, L. J.; Lee, F. Y.; Chen, P.; Norris, D.; Barrish, J. C.;
Behnia, K.; Castaneda, S.; Cornelius, L. A. M.; Das, J.; Doweyko, A.
M.; Fairchild, C.; Hunt, J. T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan,
D.; Klei, H.; Marathe, P.; Pang, S.; Peterson, R.; Pitt, S.; Schieven, G.
L.; Schmidt, R. J.; Tokarski, J.; Wen, M. L.; Wityak, J.; Borzilleri, R. M.
J. Med. Chem. 2004, 47, 6658.
results of FEP calculations for nocodazole derivatives confirm
that the enhancement of inhibitor potency can be achieved by
the reduction of the desolvation cost for enzyme−inhibitor
complexation, as well as by the strengthening of the interactions
between the inhibitor and the amino-acid residues in the ATP-
binding site.
CONCLUSIONS
■
We have identified new common inhibitors of the wild-type
and T315I mutant of ABL by applying a structure-based de
novo design using nocodazole as the inhibitor scaffold. Because
of the improvement of the scoring function by implementing a
proper solvation free energy term, the majority of the designed
derivatives are found to have a higher potency than nocodazole.
In particular, compound 29 reveals picomolar inhibitory activity
against both the wild type and T315I mutant, indicating that it
may serve as a new lead compound for the discovery of anti-
CML drugs. Decomposition analysis of the binding free
energies indicates that in order to enhance the potency of an
ABL inhibitor with structural modifications, the strengthening
of enzyme−inhibitor interactions should be greater than the
increase in desolvation cost for binding in the ATP-binding site.
Consistent with the previous experimental and computational
studies, the hydrogen bond interactions with backbone groups
of Met318 are found to be the most significant binding forces
associated with the stabilization the inhibitors in the ATP-
binding sites of the wild type and T315I mutant. Besides the
strength of the hydrogen bonds with Met318, dynamic
stabilities of the hydrogen bonds appear to be also important
for the effective inhibition of the wild type and T315I mutant of
ABL. The results of FEP calculations for nocodazole derivatives
confirm that the inhibitory activity can be enhanced not only by
the strengthening of the binding in the ATP-binding site but
also by the reduction of the desolvation cost for enzyme−
inhibitor complexation.
(8) Weisberg, E.; Manley, P. W.; Breitenstein, W.; Bruggen, J.;
̈
Cowan-Jacob, S. W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.;
Hall-Meyers, E.; Kung, A. L.; Mestan, J.; Daley, G. Q.; Callahan, L.;
Catley, L.; Cavazza, C.; Azam, M.; Neuberg, D.; Wright, R. D.;
Gilliland, D. G.; Griffin, J. D. Cancer Cell 2005, 7, 129.
(9) Kimura, S.; Naito, H.; Segawa, H.; Kuroda, J.; Yuasa, T.; Sato, K.;
Yokota, A.; Kamitsuji, Y.; Kawata, E.; Ashihara, E.; Nakaya, Y.;
Naruoka, H.; Wakayama, T.; Nasu, K.; Asaki, T.; Niwa, T.;
Hirabayashi, K.; Maekawa, T. Blood 2005, 106, 3948.
(10) Boschelli, D. H.; Ye, F.; Wang, Y. D.; Dutia, M.; Johnson, S. L.;
Wu, B.; Miller, K.; Powell, D. W.; Yaczko, D.; Young, M.; Tischler, M.;
Arndt, K.; Discafani, C.; Etienne, C.; Gibbons, J.; Grod, J.; Lucas, J.;
Weber, J. M.; Boschelli, F. J. Med. Chem. 2001, 44, 3965.
(11) Zhou, T.; Parillon, L.; Li, F.; Wang, Y.; Keats, J.; Lamore, S.; Xu,
Q.; Shakespeare, W.; Dalgarno, D.; Zhu, X. Chem. Biol. Drug Des.
2007, 70, 171.
(12) Giles, F. J.; Cortes, J.; Jones, D.; Bergstrom, D.; Kantarjian, H.;
Freedman, S. J. Blood 2007, 109, 500.
(13) Gontarewicz, A.; Balabanov, S.; Keller, G.; Colombo, R.;
Graziano, A.; Pesenti, E.; Benten, D.; Bokemeyer, C.; Fiedler, W.;
Moll, J.; Brummendorf, T. H. Blood 2008, 111, 4355.
̈
(14) Howard, S.; Berdini, V.; Boulstridge, J. A.; Carr, M. G.; Cross, D.
M.; Curry, J.; Devine, L. A.; Early, T. R.; Fazal, L.; Gill, A. L.;
Heathcote, M.; Maman, S.; Matthews, J. E.; McMenamin, R. L.;
Navarro, E. F.; O’Brien, M. A.; O’Reilly, M.; Rees, D. C.; Reule, M.;
Tisi, D.; Williams, G.; Vinkovic,
52, 379.
́
M.; Wyatt, P. G. J. Med. Chem. 2009,
(15) Shiotsu, Y.; Kiyoi, H.; Ishikawa, Y.; Tanizaki, R.; Shimizu, M.;
Umehara, H.; Ishii, K.; Mori, Y.; Ozeki, K.; Minami, Y.; Abe, A.;
Maeda, H.; Akiyama, T.; Kanda, Y.; Sato, Y.; Akinaga, S.; Naoe, T.
Blood 2009, 114, 1607.
ASSOCIATED CONTENT
■
S
* Supporting Information
(16) Quintas-Cardama, A.; Cortes, J. Clin. Cancer Res. 2008, 14, 4392.
(17) (a) Park, H.; Hong, S.; Hong, S. J. Comput.-Aided Mol. Des.
2012, 26, 983. (b) Choi, H. G.; Ren, P.; Adrian, F.; Sun, F.; Lee, H. S.;
Wang, X.; Ding, Q.; Zhang, G.; Xie, Y.; Zhang, J.; Liu, Y.; Tuntland,
T.; Warmuth, M.; Manley, P. W.; Mestan, J.; Gray, N. S.; Sim, T. J.
Med. Chem. 2010, 53, 5439. (c) Huang, W. S.; Metcalf, C. A.;
Sundaramoorthi, R.; Wang, Y.; Zou, D.; Thomas, R. M.; Zhu, X.; Cai,
L.; Wen, D.; Liu, S.; Romero, J.; Qi, J.; Chen, I.; Banda, G.; Lentini, S.
P.; Das, S.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.;
Snodgrass, J. T.; Broudy, M. I.; Russian, K.; Zhou, T.; Commodore, L.;
Narasimhan, N. I.; Mohemmad, Q. K.; Iuliucci, J.; Rivera, V. M.;
Dalgarno, D. C.; Sawyer, T. K.; Clackson, T.; Shakespeare, W. C. J.
Med. Chem. 2010, 53, 4701. (d) Thomas, M.; Huang, W. S.; Wen, D.;
Zhu, X.; Wang, Y.; Metcalf, C. A.; Liu, S.; Chen, I.; Romero, J.; Zou,
D.; Sundaramoorthi, R.; Li, F.; Qi, J.; Cai, L.; Zhou, T.; Commodore,
L.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J. T.;
Broudy, M. I.; Russian, K.; Iuliucci, J.; Rivera, V. M.; Sawyer, T. K.;
Dalgarno, D. C.; Clackson, T.; Shakespeare, W. C. Bioorg. Med. Chem.
Lett. 2011, 21, 3743. (e) Deng, X.; Lim, S. M.; Zhang, J.; Gray, N. S.
Bioorg. Med. Chem. Lett. 2010, 20, 4196. (f) Cao, J.; Fine, R.; Gritzen,
C.; Hood, J.; Kang, X.; Klebansky, B.; Lohse, D.; Mak, C. C.;
McPherson, A.; Noronha, G.; Palanki, M. S. S.; Pathak, V. P.; Renick,
J.; Soll, R.; Zeng, B.; Zhu, H. Bioorg. Med. Chem. Lett. 2007, 17, 5812.
(18) (a) Gambacorti-Passerini, C.; Gasser, M.; Ahmed, S.; Assouline,
Experimental procedures, characterization data, and copies of
1H and 13C NMR spectra for all compounds. This material is
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Dedicated to Professor Deukjoon Kim on the occasion of his
retirement. This research was supported by National Research
Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (NRF-2012-0008440,
2011-0016436, 2011-0020322) and the Institute for Basic
Science (IBS).
REFERENCES
■
(1) Quintas-Cardama, A.; Cortes, J. Blood 2009, 113, 1619.
(2) Eck, M. J.; Manley, P. W. Curr. Opin.Cell Biol. 2009, 21, 288.
(3) Schenone, S.; Bruno, O.; Radi, M.; Botta, M. Med. Res. Rev. 2010,
31, 1.
S.; Scapozza, L. Leukemia 2005, 19, 1267. (b) Lu, S.; Luo, Q.; Hao, X.;
̈
Li, X.; Ji, L.; Zheng, W.; Wang, F. Bioorg. Med. Chem. Lett. 2011, 21,
6964. (c) Wang, D.; Zhang, Z.; Lu, X.; Feng, Y.; Luo, K.; Gan, J.;
J
dx.doi.org/10.1021/ja311756u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX