4340
B. Mukhopadhyay / Tetrahedron Letters 47 (2006) 4337–4341
8. Winnik, F. M.; Carver, J. P.; Krepinsky, J. J. J. Org.
Chem. 1982, 47, 2701–2707.
3.53 (m, 1H, H-5); 2.09, 2.05 (2s, 6H, 2 · COCH3). ESI
MS m/z 481.1 [M+Na].
9. Ault, R. G.; Howarth, W. N.; Hirst, E. L. J. Chem. Soc.
1935, 1012.
10. Wood, H. B., Jr.; Diehl, H. W.; Fletcher, H. G., Jr. J. Am.
Chem. Soc. 1957, 79, 1986–1988.
24. 2-Trimethylsilylethyl 2,3-di-O-acetyl-4,6-O-benzylidene-b-
D-galactopyranoside (8). 1H NMR (300 MHz, CDCl3) d:
7.65–7.39 (m, 5H, ArH); 5.55 (s, 1H, CHPh); 5.15 (dd, 1H,
J1,2 = 7.8 Hz, J2,3 = 10.2 Hz, H-2); 5.04 (dd, 1H, J2,3
,
´
´
11. Liptak, A.; Imre, J.; Nanasi, P. Carbohydr. Res. 1981, 92,
J3,4 = 3.6 Hz, H-3); 4.45 (d, 1H, J1,2 = 7.8 Hz, H-1); 4.00
[m, 1H, O–CH2–CH2–Si(CH3)3]; 3.78–3.53 (m, 3H, H-5,
H-6a, H-6b); 3.50 [m, 2H, O–CH2–CH2–Si(CH3)3]; 2.03,
2.00 (2s, 6H, 2 · COCH3); 0.89 [m, 2H, O–CH2–CH2–
Si(CH3)3]; 0.02 [s, 9H, O–CH2–CH2–Si(CH3)3]. ESI MS
m/z 475.1 [M+Na].
154–156.
12. Boulineau, F. P.; Wei, A. Carbohydr. Res. 2001, 334, 271–
279.
13. Kartha, K. P. R. Tetrahedron Lett. 1986, 27, 3415–
3416.
14. (a) Garegg, P. J.; Swahn, C.-G. Methods Carbohydr.
Chem. 1980, 8, 317; (b) Hoffmann, B.; Bernet, B.; Vasella,
A. Helv. Chim. Acta. 2002, 85, 265–286.
15. Mukhopadhyay, B.; Russell, D. A.; Field, R. A. Carbo-
hydr. Res. 2005, 340, 1075–1080.
25. n-Octyl
2-acetamido-3-O-acetyl-2-deoxy-4,6-O-benzyli-
dene-a-D-glucopyranoside (10). 1H NMR (300 MHz,
CDCl3) d: 7.44–7.31 (m, 5H, Ar.H); 5.86 (d, 1H,
J2,NH = 9.6 Hz, NH); 5.50 (s, 1H, CHPh); 5.29 (t, 1H,
J2,3 = J3,4 = 9.6 Hz, H-3); 4.79 (d, 1H, J1,2 = 3.2 Hz, H-1);
4.34 (dt, 1H, J2,3, J3,4, J2,NH = 9.6 Hz, H-2); 4.26 (dd, 1H,
J5,6 = 4.8 Hz, J6a,6b = 10.4 Hz, H-6a); 3.88 (m, 1H, H-5);
3.79 (t, 1H, J3,4 = J4,5 = 9.6 Hz, H-4); 3.68 (m, 2H, H-6b,
OCH2); 3.38 (m, 1H, OCH2); 2.03 (s, 3H, COCH3); 1.92 (s,
3H, NHCOCH3); 1.58 (m, 2H, OCH2CH2); 1.29 (m, 10H,
5 · octyl CH2); 0.87 (t, 3H, J = 5.7 Hz, octyl–CH3). ESI
MS m/z 486.3 [M+Na].
16. (a) Zolfigol, M. A.; Bamoniri, A. Synlett 2002, 1621–1623;
(b) Zolfigol, M. A. Tetrahedron 2001, 57, 9509; (c)
Zolfigol, M. A.; Shirini, F.; Ghorbani Choghamarani,
A.; Mohammadpoor-Baltork, I. Green Chem. 2002, 4, 562.
17. Shirini, F.; Zolfigol, M. A.; Mohammadi, K. Bull. Korean
Chem. Soc. 2004, 25, 325–327.
18. Preparation of H2SO4 immobilized on silica: To a slurry of
silica gel (5 g, mesh 60–120, Spectrochem, India) in diethyl
ether (20 mL) was added commercially available concd
H2SO4 (250 lL), and the solvents were evaporated under
vacuum. The free flowing silica thus obtained was heated
at 110 ꢁC for 2 h and kept in a desiccator over P2O5 for
further use.
26. Methyl 2,3-di-O-acetyl-4,6-O-(4-methoxybenzylidene)-b-D-
glucopyranoside (11). 1H NMR (300 MHz, CDCl3) d: 7.35,
6.87 (2d, 4H, J = 6.9 Hz, ArH); 5.46 (s, 1H, CHPh); 5.30
(t, 1H, J2,3 = J3,4 = 9.3 Hz, H-3); 4.95 (dd, 1H,
J1,2 = 7.8 Hz, J2,3, H-2); 4.50 (d, 1H, J1,2, H-1); 4.36 (dd,
1H, J5,6 = 4.8 Hz, J6a,6b = 10.5 Hz, H-6a); 3.80 (s, 3H,
C6H4OCH3); 3.75 (m, 1H, H-6b); 3.68 (t, 1H,
J3,4 = J4,5 = 9.3 Hz, H-4); 3.51 (s, 3H, OCH3); 3.47 (m,
1H, H-5); 2.06, 2.03 (2s, 6H, 2 · COCH3). ESI MS m/z
419.2 [M+Na].
19. General procedure for benzylidenation–acetylation: To a
mixture of sugar glycoside (1 mmol) in dry acetonitrile
(5 mL), benzaldehyde dimethylacetal (1 mmol) was added,
followed by H2SO4–silica (50 mg). The mixture was stirred
at room temperature until TLC revealed complete con-
version of the starting material to a faster moving
component. Acetic anhydride (4 mmol) was added and
stirring continued until TLC showed complete conversion
to the diacetates. Filtration through a pad of Celiteꢂ and
evaporation of the solvent under vacuum yielded the
27. Methyl 2,3-di-O-acetyl-4,6-O-(4-nitrobenzylidene)-a-D-gluco-
pyranoside (13). 1H NMR (300 MHz, CDCl3) d: 8.12,
7.56 (2d, 4H, J = 7.0 Hz, ArH); 5.54 (s, 1H, CHPh); 5.49
(t, 1H, J2,3 = J3,4 = 9.6 Hz, H-3); 4.90 (d, 1H, J1,2
=
5.1 Hz, H-1); 4.84 (dd, 1H, J1,2 = 5.1 Hz, J2,3 = 9.6 Hz, H-
2); 4.27 (dd, 1H, J5,6 = 4.5 Hz, J6a,6b = 9.6 Hz, H-6a);
3.90 (m, 1H, H-5); 3.75 (t, 1H, J6a,6b = 9.6 Hz, H-6b); 3.63
(t, 1H, J3,4 = J4,5 = 9.6 Hz, H-4); 3.36 (s, 3H, OCH3);
2.04, 2.02 (2s, 6H, 2 · COCH3). ESI MS m/z 434.1
[M+Na].
1
desired products in >95% purity, as judged by H NMR.
20. For the synthesis of compounds 10, 11, and 13, 4-methoxy-
benzaldehyde, 3-chlorobenzaldehyde, and 4-nitrobenz-
aldehyde were used instead of benzaldehyde dimethy-
lacetal. The remainder of the procedure was the same as
before.
28. Methyl
2,3-di-O-acetyl-4,6-O-(3-chlorobenzylidene)-a-D-
glucopyranoside (14). 1H NMR (300 MHz, CDCl3) d:
7.42–7.23 (m, 4H, ArH); 5.56 (t, 1H, J2,3 = J3,4 = 9.6 Hz,
H-3); 5.45 (s, 1H, CHPh); 4.92 (d, 1H, J1,2 = 3.6 Hz, H-1);
4.90 (dd, 1H, J1,2 = 3.6 Hz, J2,3 = 9.6 Hz, H-2); 4.30–4.28
(m, 1H), 4.27 (dd, 1H, J5,6 = 4.8 Hz, J6a,6b = 10.2 Hz, H-
6a); 3.91 (m, 1H, H-5); 3.74 (t, 1H, J6a,6b = 10.2 Hz, H-
6b); 3.62 (t, 1H, J3,4 = J4,5 = 9.6 Hz, H-4); 3.39 (s, 3H,
OCH3); 2.07, 2.04 (2s, 6H, 2 · COCH3). ESI MS m/z 423.1
[M+Na].
21. General procedure for isopropylidenation–acetylation: To a
mixture of sugar glycoside (1 mmol) in dry acetonitrile
(5 mL), 2,2-dimethoxypropane (1 mmol) was added, fol-
lowed by H2SO4–silica (50 mg). The mixture was stirred at
room temperature until TLC revealed complete conver-
sion of the starting material to a faster moving compo-
nent. Acetic anhydride (3 mmol) was added and stirring
continued until TLC showed complete conversion to the
acetates. Filtration through a pad of celiteꢂ and evapo-
ration of the solvent under vacuum yielded the desired
29. p-Tolyl 2,3-di-O-acetyl-4,6-O-benzylidene-1-thio-b-D-gluco-
pyranoside (16). 1H NMR (300 MHz, CDCl3) d: 7.45–7.14
(m, 9H, ArH); 5.48 (s, 1H, CHPh); 5.33 (t, 1H,
1
products in >95% purity, as judged by H NMR. For the
mannose derivative (23), 2 mmol of 2,2-dimethoxypro-
pane was added and the di-isopropylidene derivative (24)
was isolated by filtration and evaporation of the solvents.
22. Mathers, D. S.; Robertson, G. J. J. Chem. Soc. 1933, 696–
698.
23. 4-Methoxyphenyl 2,3-di-O-acetyl-4,6-O-benzylidene-b-D-
galactopyranoside (6). 1H NMR (300 MHz, CDCl3) d:
7.51–6.76 (m, 9 H, ArH); 5.57 (dd, 1H, J1,2 = 8.1 Hz,
J2,3 = 10.2 Hz, H-2); 5.45 (s, 1H, CHPh); 5.04 (dd, 1H,
J2,3, J3,4 = 3.3 Hz, H-3); 4.89 (d, 1H, J1,2 = 8.1 Hz, H-1);
4.35 (d, 1H, J3,4 = 3.3 Hz, H-4); 4.29, 4.20 (2bd, 2H,
J6a,6b = 12.3 Hz, H-6a, H-6b); 3.71 (s, 3H, C6H4OCH3),
J2,3 = J3,4 = 9.2 Hz, H-3); 4.98 (t, 1H, J1,2 = 9.2 Hz, J2,3,
H-2); 4.74 (d, 1H, J1,2 = 9.2 Hz, H-1); 4.37 (dd, 1H,
J5,6 = 4.4 Hz, J6a,6b = 10.2 Hz, H-6a); 3.78 (t, 1H,
J3,4 = J4,5 = 9.2 Hz, H-4); 3.64 (t, 1H, J6a,6b = 10.2 Hz,
H-6b); 3.53 (m, 1H, H-5); 2.36 (s, 3H, SC6H4CH3), 2.12,
2.03 (2s, 6H, 2 · COCH3). ESI MS m/z 481.1 [M+Na].
30. Ashton, P. R.; Brown, C. L.; Menzer, S.; Nepogodiev, S.
A.; Stoddart, J. F.; Williams, D. J. Chem. Eur. J. 1996, 2,
580–591.
31. Ethyl 2-O-acetyl-3,4-di-O-isopropylidene-1-thio-b-L-fuco-
pyranoside (20). 1H NMR (300 MHz, CDCl3) d: 4.93
(dd, 1H, J1,2 = 10.2 Hz, J2,3 = 7.2 Hz, H-2); 4.25 (d, 1H,