ACS Medicinal Chemistry Letters
Letter
hedgehog pathway inhibitors: optimization of cellular activity and
mode of action atudies. ACS Med. Chem. Lett. 2012, 3, 808−813.
(14) Stanton, B. Z.; Peng, L. F.; Maloof, N.; Nakai, K.; Wang, X.;
Duffner, J. L.; Taveras, K. M.; Hyman, J. M.; Lee, S. W.; Koehler, A.
N.; Chen, J. K.; Fox, J. L.; Mandinova, A.; Schreiber, S. L. A small
molecule that binds hedgehog and blocks its signaling in human cells.
Nat. Chem. Biol. 2009, 5, 154−156.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
The manuscript was written through contributions of all
authors.
■
(15) Peng, L. F.; Stanton, B. Z.; Maloof, N.; Wang, X.; Schreiber, S.
L. Syntheses of aminoalcohol-derived macrocycles leading to a small-
molecule binder to and inhibitor of sonic hedgehog. Bioorg. Med.
Chem. Lett. 2009, 19, 6319−6325.
(16) Arya, P.; Joseph, R.; Gan, Z. H.; Rakic, B. Exploring new
chemical space by stereocontrolled diversity-oriented synthesis. Chem.
Biol. 2005, 12, 163−180.
(17) Reayi, A.; Arya, P. Natural product-like chemical space: search
for chemical dissectors of macromolecular interactions. Curr. Opin.
Chem. Biol. 2005, 9, 240−247.
(18) Dasari, B.; Jogula, S.; Borhade, R.; Balasubramanian, S.;
Chandrasekar, G.; Satish Srinivas Kitambi, S. S.; Arya, P. Macrocyclic
glycohybrid toolbox identifies novel antiangiogenesis agents from
zebrafish Assay. Org. Lett. 2013, 15, 432−435.
Funding
This work was supported by DST (SR/S1/OC-30/2010) and
DBT (102/IFD/SAN/PR-2863) grants to P.A.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
S.K.R.G. and S.C. thank CSIR funding agency for the award of
the Ph.D. fellowships. We also thank the ILS analytical team for
providing an excellent HPLC-MS and NMR support. S.S.K.
thanks Sodertorns Hogskola for the financial support to
perform zebrafish assays.
̈
̈
̈
(19) Aeluri, M.; Pramanik, C.; Lakshindra Chetia, L.; Mallurwar, N.
K.; Balasubramanian, S.; Chandrasekar, G.; Kitambi, S. S.; Arya, P. 14-
Membered macrocyclic ring-derived toolbox: the identification of
small molecule inhibitors of angiogenesis and early embryo develop-
ment in zebrafish assay. Org. Lett. 2013, 15, 436−439.
(20) Aeluri, M.; Gaddam, J.; Trinath, D. V. K. S.; Chandrasekar, G.;
Kitambi, S. S.; Arya, P. An intramolecular heck approach to obtain 17-
membered macrocyclic diversity and the identification of an
antiangiogenesis agent from a zebrafish assay. Eur. J. Org. Chem.
2013, DOI: 10.1002/ejoc.201300408.
(21) Chamakuri, S.; Guduru, S. K. R.; Pamu, S.; Chandrasekar, G.;
Kitambi, S. S.; Arya, P. A modular approach to build macrocyclic
diversity in aminoindoline scaffolds identifies antiangiogenesis agents
from a zebrafish assay. Eur. J. Org. Chem. 2013, DOI: 10.1002/
ejoc.201300409.
(22) Jogula, S.; Dasari, B.; Khatravath, M.; Chandrasekar, G.;
Kitambi, S. S.; Arya, P. Building a macrocyclic toolbox from C-linked
carbohydrates identifies novel antiangiogenesis agents from zebrafish
assay. Eur. J. Org. Chem. 2013, accepted for publication.
(23) Couve-Bonnaire, S.; Chou, D. T. H.; Gan, Z.; Arya, P. A solid-
phase, library synthesis of natural-product-like derivatives from an
enantiomerically pure tetrahydroquinoline scaffold. J. Comb. Chem.
2004, 6, 73−77.
(24) Prakesch, M.; Sharma, U.; Sharma, M.; Khadem, S.; Leek, D. M.;
Arya, P. Part 1. Modular approach to obtaining diverse tetrahy-
droquinoline-derived polycyclic skeletons for use in high-throughput
generation of natural-product-like chemical probes. J. Comb. Chem.
2006, 8, 715−734.
(25) Sharma, U.; Srivastava, S.; Prakesch, M.; Sharma, M.; Leek, D.
M.; Arya, P. Part 2: Building diverse natural-product-like architectures
from a tetrahydroaminoquinoline scaffold. Modular solution- and
solid-phase approaches for use in high-throughput generation of
chemical probes. J. Comb. Chem. 2006, 8, 735−761.
(26) Prakesch, M.; Srivastava, S.; Leek, D. M.; Arya, P. Part 3. A
novel stereocontrolled, in situ, solution- and solid-phase, aza michael
approach for high-throughput generation of tetrahydroaminoquino-
line-derived natural-product-like architectures. J. Comb. Chem. 2006, 8,
762−773.
(27) Arya, P.; Couve-Bonnaire, S.; Durieux, P.; Laforce, D.; Kumar,
R.; Leek, D. M. Solution- and solid-phase synthesis of natural product-
like tetrahydroquinoline-based polycyclics having a medium size ring.
J. Comb. Chem. 2004, 6, 735−745.
REFERENCES
■
(1) Arkin, M. R.; Wells, J. A. Small-molecule inhibitors of protein−
protein interactions: progressing towards the dream. Nat. Rev. Drug
Discovery 2004, 3, 301−317.
(2) Wells, J. A.; McClendon, C. L. Reaching for high-hanging fruit in
drug discovery at protein−protein interfaces. Nature 2007, 450, 1001−
1009.
(3) Boger, D. L.; Desharnais, J.; Capps, K. Solution-phase
combinatorial libraries: modulating cellular signaling by targeting
protein−protein or protein−DNA interactions. Angew. Chem., Int. Ed.
2003, 42, 4138−4176.
(4) Scott, J. D.; Pawson, T. Cell signaling in space and time: where
proteins come together and when they’re apart. Science 2009, 326,
1220−1224.
(5) Pawson, T.; Linding, R. Network medicine. FEBS Lett. 2008, 582,
1266−1270.
(6) Schreiber, S. L. Organic synthesis toward small-molecule probes
and drugs. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 6699−6702.
(7) Dandapani, S.; Marcaurelle, L. A. Grand challenge commentary:
Accessing new chemical space for ’undruggable’ targets. Nat. Chem.
Biol. 2010, 6, 861−863.
(8) Newman, D. J.; Hill, R. T. New drugs from marine microbes: the
tide is turning. J. Ind. Microbiol. Biotechnol. 2006, 33, 539−544.
(9) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. The exploration
of macrocycles for drug discovery: an underexploited structural class.
Nat. Rev. Drug Discovery 2008, 7, 608−624.
(10) Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.;
Gerard, B.; Kesavan, S.; Lee, M. D. T.; Liu, H.; Lowe, J. T.; Marie, J.
C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B.
C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y. L.; Fass,
D. M.; Reis, S. A.; Zhao, W. N.; Haggarty, S. J.; Palmer, M.; Foley, M.
A. An aldol-based build/couple/pair strategy for the synthesis of
medium- and large-sized rings: discovery of macrocyclic histone
deacetylase inhibitors. J. Am. Chem. Soc. 2010, 132, 16962−16976.
(11) Moretti, J. D.; Wang, X.; Curran, D. P. Minimal fluorous tagging
strategy that enables the synthesis of the complete stereoisomer library
of SCH725674 macrolactones. J. Am. Chem. Soc. 2012, 134, 7963−
7970.
(12) Ajay, A.; Sharma, S.; Gupt, M. P.; Bajpai, V.; Kumar, B.;
Kaushik, M. P.; Konwar, R.; Ampapathi, R. S.; Tripathi, R. P. Diversity
oriented synthesis of pyran based polyfunctional stereogenic macro-
cyles and their conformational studies. Org. Lett. 2012, 14, 4306−
4309.
(28) Arya, P.; Durieux, P.; Chen, Z.-X.; Joseph, R.; Leek, D. M.
Stereoselective diversity-oriented solution and solid-phase synthesis of
tetrahydroquinoline-based polycyclic derivatives. J. Comb. Chem. 2004,
6, 54−64.
(13) Dockendorff, C.; Nagiec, M. M.; Weiwer, M.; Buhrlage, S.; Ting,
A.; Nag, P. P.; Germain, A.; Kim, H. J.; Youngsaye, W.; Scherer, C.;
Bennion, M.; Xue, L.; Stanton, B. Z.; Lewis, T. A.; Macpherson, L.;
Palmer, M.; Foley, M. A.; Perez, J. R.; Schreiber, S. L. Macrocyclic
D
dx.doi.org/10.1021/ml400026n | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX