48
H. Sharghi et al. / Journal of Organometallic Chemistry 738 (2013) 41e48
Table 3 (continued )
exceptional efficacy of the TPY framework as copper scavenger
guarantees negligible copper leaching. Other significant features of
this method include its ease of operation, high efficiency, and
reusability in the reaction process, which provides an efficient
method for synthesis of different heterocyclic systems.
Entry
Amine
Product
Time [h] Yield [%]a
N
N
N
NH2
N
12
2.5
92
O
Acknowledgments
O
26
a
Isolated yield.
We gratefully acknowledge the support of this work by the
Shiraz University Research Council.
HC(OEt)2
HC(OEt)2
OEt
Appendix A. Supplementary data
OEt
2
N3
Supplementary data related to this article can be found at http://
[Cu(II)-TPY]
II
N3
[Cu(II)TPY]
I
NaN3
1
RNH2
References
-OEt
NHR
3
[1] R.N. Bulter, in: A.R. Katrizky, C.W. Rees, E.F.V. Scriven (Eds.), Comprehensive
Heterocyclic Chemistry, vol. 4, Pergamon, Oxford, UK, 1996.
[2] E.P. Ellis, G.B. West, Progress in Medicinal Chemistry, vol. 17, Biomedical Press,
1980, p. 151.
[3] S. Narender Rao, T. Ravisankar, J. Latha, K. Sudhakar Babu, Der Pharma Chem. 4
(2012) 1093e1103.
[4] T. Narasaiaha, D. Subba Raoa, S. Rasheeda, G. Madhavaa, D. Srinivasulua,
P. Brahma Naidub, C. Naga Rajua, Der Pharm. Lett. 4 (2012) 854e862.
[5] M. Ahmad Malik, S.A. Al-Thabaiti, M.A. Malik, Int. J. Mol. Sci. 13 (2012) 10880e
10898.
[6] R.N. Butler, Adv. Heterocycl. Chem. 21 (1977) 323.
[7] S. Bepary, B.K. Das, S.C. Bachar, J.K. Kundu, A.S. Shamsur rouf, B.K. Datta, Pak.
J. Pharm. Sci. 21 (2008) 295e298.
[Cu(II)-TPY]
-OEt
N
N
N
N
EtO
OEt
N R
[Cu(II)-TPH2Y]
N
4
R
N
N3
III
-OEt
N
[Cu(II)-TPY]
EtO
IV
Scheme 6. A plausible mechanism for the formation of 1-substituted 1H-tetrazol.
[8] J. Li, S.Y. Chen, J.A. Tino, Bioorg. Med. Chem. Lett. 18 (6) (2008) 5. PMID
18295486.
[9] R.J. Nachman, G.M. Coast, K. Kaczmarek, H.J. Williams, J. Zabrocki, Acta Bio-
chim. Pol. 51 (2004) 121e127.
[10] P. Camilleri, M.W. Kerr, T.W. Newton, J.R. Bowyer, J. Agric. Food Chem. 37
(1989) 196e200.
[11] R. Damavarapu, T.M. Klapötke, J. Stierstorfer, K.R. Tarantik, Propellants Explos.
Pyrotech. 35 (2010) 395e406.
[12] C. Zhaoxu, X. Heming, Propellants Explos. Pyrotech. 24 (1999) 319e324.
[13] L. Miguel Teodoro Frija, A. Ismael, M. Lurdes Santos Cristiano, Molecules 15
(2010) 3757e3774.
[14] G.I. Koldobskii, Russ. J. Org. Chem. 42 (2006) 469e486.
[15] A. Palazzi, S. Stagni, S. Selva, M. Monari, J. Organomet. Chem. 669 (2003) 135.
[16] K. Gupta, C.Y. Rim, C.H. Oh, Synlett (2004) 2227.
[17] N.T. Pokhodylo, V.S. Matiychuk, M.D. Obushak, Tetrahedron 64 (2008) 1430e
1434.
[18] D. Kundu, A. Majee, A. Hajra, Tetrahedron Lett. 50 (2009) 2668e2670.
[19] Y. Boland, P. Hertsens, J. Marchand-Brynaert, Y. Garcia, Synthesis (2006) 1504.
[20] T. Jin, S. Kamijo, Y. Yamamoto, Tetrahedron Lett. 45 (2004) 9435e9437.
[21] W.-K. Su, Z. Hong, W.-G. Shan, X.-X. Zhang, Eur. J. Org. Chem. (2006) 2723e
2726.
[22] T.M. Potewar, S.A. Siddiqui, R.J. Lahoti, K.V. Srinivasan, Tetrahedron Lett. 48
(2007) 1721e1724.
[23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, A. Purkhosrow,
Asian J. Org. Chem. 1 (4) (2012) 377e388.
[24] P.D. Stevens, J. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 7 (11) (2005)
2085e2088.
[25] P. Serp, in: P. Serp, J.L. Figueiredo (Eds.), Carbon Materials for Catalysis, John
Wiley & Sons, Inc., Hoboken, NJ, 2009, pp. 309e372.
As shown in Table 3, aniline and a series of its substituted de-
rivatives, bearing a variety substituents (and their isomers), con-
taining electron-withdrawing or electron-donating groups such as
chloro, bromo, nitro, acetyl, alkoxy and alkyl underwent condensa-
tion in reasonable reaction times with excellent isolated yields
(Table 3, Entry 2e12). However, applying nitro aniline as an elec-
trondeficient amine was accompanied by the elongation of the re-
action times to 4 h with the production of the desired product in 80%
yields (Table 3, Entry 11).
A proposed mechanism for the 1-substituted tetrazole-forming
reaction is shown in Scheme 6. It is clear from the sequence of steps
that the role of [AMWCNTs-OeCu(II)ePhTPY] is complexation of
NaN3 with [Cu(II)eTPY] complexes, activation of ethoxy groups and
cleavage of CeO bonds. It can generate carbenium ions that are
resonance stabilized by neighboring hetero atom O/N or readily
facilitate sequential nucleophilic displacements by amine and
cyclization with azide. This would explain the formation of in-
termediates (II)e(IV). [Cu(II)eTPY] nano-catalyst-assisted elimi-
nation of ethanol from (IV) leads to the final heterocycle 4.
[26] M. Monthioux, P. Serp, E. Flahaut, C. Laurent, A. Peigney, M. Razafinimanana,
W. Bacsa, J.-M. Broto, in: B. Bhushan (Ed.), Springer Handbook of Nanotech-
nology, second revised and extended ed., Springer-Verlag, Heidelberg, Ger-
many, 2007, pp. 43e112.
[27] G. Rotas, A.S.D. Sandanayaka, N. Tagmatarchis, T. Ichihashi, M. Yudasaka,
S. Iijima, Osamu Ito, J. Am. Chem. Soc. 130 (2008) 4725e4731.
[28] C.N. Moorefield, S. Li, S.-H. Hwang, C.D. Shreimer, G.R. Newkome, Chem.
Commun. (2006) 1091.
4. Conclusions
In summary, we have reported the use of robust and recyclable
heterogeneous catalysts that provide efficient access to one-pot
synthesis of various 5-substituted-1H-tetrazoles and 1-substituted-
1H-tetrazoles. The use of these catalysts facilitates the imple-
mentation of high-throughput synthetic methodologies, while the
[29] Z. achary, P. Demko, K.B. Sharpless, J. Org. Chem. 66 (2001) 7945e7950.