Inorganic Chemistry
Communication
Scheme 4. Synthesis of the Iodo-Bridged Bimetallic Palladium
Complexes 12 and 13
AUTHOR INFORMATION
Corresponding Author
■
a
Author Contributions
All authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the Israel Science Foundation for financial support and
Dr. Sofia Lipstman for help with X-ray analysis.
■
a
All hydrogen atoms and oxygen atoms of the nitro groups are
REFERENCES
omitted for clarity.
■
(1) (a) Homden, D. M.; Redshaw, C. Chem. Rev. 2008, 108, 5086−
5130. (b) Wieser, C.; Dieleman, C. B.; Matt, D. Coord. Chem. Rev. 1997,
165, 93−161.
the three interacts with the formally acidic hydrogen atom. When
no dmap was added to a solution in the reaction between 8 and
AgBF4, no precipitate was observed and the 1H NMR spectrum
revealed relatively sharp signals of the cationic palladium
intermediate. An addition of Ph3P instead of dmap leads to a
new complex that shows sharp signals in both 1H and 31P NMR
spectra. The chemical shift of the phosphine ligand at 16.4 ppm is
very similar to that in 5d, suggesting that it occupies the position
trans to the aryl group. Thus, the presence of the dmap ligand at
this position appears to be essential for the formation of insoluble
10a. Dissolution of 10a in DMF followed by reprecipitation with
(2) Kotzen, N.; Vigalok, A. Supramol. Chem. 2008, 20, 129−139.
(3) Creaven, B. S.; Donlon, D. F.; McGinley, J. Coord. Chem. Rev. 2009,
253, 893−962.
(4) Schuhle, D. T.; Peters, J. A.; Schatz, J. Coord. Chem. Rev. 2011, 255,
̈
2727−2745.
(5) (a) Floriani, C.; Floriani-Moro, R. Adv. Organomet. Chem. 2001, 47,
167−233. (b) Dubberley, S. R.; Friedrich, A.; Willman, D. A.;
Mountford, P.; Radius, U. Chem.Eur. J. 2003, 9, 3634−3654.
(c) Soriente, A.; De Rosa, M.; Fruilo, M.; Lepore, L.; Gaeta, C.; Neri,
P. Adv. Synth. Catal. 2005, 347, 816−824. (d) Ladipo, F. T.;
Sarveswaran, V.; Kingston, J. V.; Huyck, R. A.; Bylikin, S. Y.; Carr, S.
D.; Watts, R.; Parkin, S. J. Organomet. Chem. 2004, 689, 502−514.
(e) Olmstead, M. M.; Sigel, G.; Hope, H.; Xu, X.; Power, P. P. J. Am.
Chem. Soc. 1985, 107, 8087−8091.
1
diethyl ether did not change the H NMR spectrum (broad
signals in DMSO-d6), suggesting that its proposed polymeric
structure is thermodynamically controlled.
Finally, we decided to explore the chemistry of oxacalixarenes
bearing two metal centers at the opposing aromatic rings.
Because of the constrained geometry of oxacalixarenes, such
complexation can lead to the ligand bridges between the two
metals at the top of the calixarene cavity. Thus, we prepared the
diodocalixarene 11 and treated it with Pd2(dba)3/dmap (Scheme
4). Under these conditions, a new complex 12 was formed in
high yield, which showed the presence of three different dmap
ligands by 1H NMR spectroscopy. X-ray analysis of 1214 revealed
that there are two palladium atoms bound to the opposing
aromatic rings of the oxacalixarene moiety. Importantly, one of
the iodo ligands is coordinated to both metals, demonstrating the
feasibility of the placement of bridging ligands between the two
metal centers over the oxacalixarene cavity. Removal of the
second iodide with AgBF4 in the presence of an additional dmap
molecule led to the formation of complex 13 (Scheme 4), which
showed the symmetrical arrangement of the coordinated ligands
in the NMR spectra. The X-ray structure confirmed that the
remaining iodo ligand is equally shared by the palladium atoms in
the overall symmetrical environment.
(6) (a) Staffilani, M.; Hancock, K. S. B.; Steed, J. W.; Holman, K. T.;
Atwood, J. L.; Junega, R. K.; Burkhalter, R. S. J. Am. Chem. Soc. 1997,
119, 6324. (b) Ishii, Y.; Onaka, K.-I.; Hirakawa, H.; Shiramizu, K. Chem.
Commun. 2002, 1150−1151. (c) Kotzen, N.; Goldberg, I.; Lipstman, S.;
Vigalok, A. Inorg. Chem. 2006, 45, 5266−5268.
(7) (a) Fahlbusch, T.; Frank, M.; Maas, G.; Schatz, J. Organometallics
2009, 28, 6183−6193. (b) Lai, S.-W.; Chan, Q. K.-W.; Han, J.; Zhi, Y.-
G.; Zhu, N.; Che, C.-M. Organometallics 2009, 28, 34−37.
(8) (a) Al-Saraierh, H.; Miller, D. O.; Georghiou, P. E. J. Org. Chem.
2005, 70, 8273−8280. (b) Bukhaltsev, E.; Goldberg, I.; Vigalok, A.
Organometallics 2007, 26, 4015−4020.
(9) For a rare example of metal coordination to the lower rim aryl
group, see: Espinas, J.; Pelletier, J.; Jeanneau, E.; Darbost, U.; Szeto, K.
C.; Lucas, C.; Thivolle-Cazat, J.; Duchamp, C.; Henriques, N.; Bouchu,
D.; Basset, J.-M.; Chermette, H.; Bonnamour, I.; Taoufik, M.
Organometallics 2011, 30, 3512−3521.
(10) For general reviews on oxacalixarenes, see: (a) Maes, W.; Dehaen,
W. Chem. Soc. Rev. 2008, 37, 2393−2402. (b) Wang, M.-X. Chem.
Commun. 2008, 4541−4551. (c) For oxa[3]calixarenes, see: Cottet, K.;
Marcos, P. M.; Cragg, P. J. Beilstein J. Org. Chem. 2012, 8, 201.
(11) (a) Yao, B.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Chem.
Commun. 2009, 2899−2901. (b) Wang, Z.-L.; Zhao, L.; Wang, M.-X.
Chem. Commun. 2012, 2899−2901.
In summary, we prepared the first transition-metal (palla-
dium) complexes of oxacalixarene molecules. These complexes
can be modified to selectively bind various external ligands that
behave as a lid at the wide opening of the calixarene scaffold. To
our knowledge, such complexation is unprecedented in
calixarene chemistry and its utilization in molecular recognition
and catalysis is presently being explored in our laboratories.
(12) Katz, J. L.; Feldman, M. B.; Conry, R. R. Org. Lett. 2005, 7, 91.
(13) (a) Jiao, L.; Hao, E.; Fronczek, F. R.; Smith, K. M.; Graca, M.;
Vicente, H. Tetrahedron 2007, 63, 4011−4017. (b) Konishi, H.; Mita,
T.; Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2007, 48, 3029.
(14) While the connectivity has been unequivocally determined, the
structure is severely disordered and contains large quantities of solvent.
In addition, the crystals decomposed instantaneously upon removal
from solution and had to be manipulated at −30 °C.
ASSOCIATED CONTENT
* Supporting Information
Experimental details for compounds 1−13 and X-ray analysis
data (CIF). This material is available free of charge via the
■
S
C
dx.doi.org/10.1021/ic400925y | Inorg. Chem. XXXX, XXX, XXX−XXX