10.1002/adsc.201700509
Advanced Synthesis & Catalysis
Acknowledgements
We are grateful for the financial support from the National Basic
Research Program of China (973)-2015CB856603, the Strategic
Priority Research Program of the Chinese Academy of Sciences,
Grant No. XDB20000000, the National Natural Science
Foundation of China (20472096, 21372241, 21572052, 20672127,
21421091, 21372250, 21121062, 21302203 and 20732008).
References
[1] a) A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, V. G. Nenajdenko
Chem. Rev. 2010, 110, 5235; b) A. V. Lygin, A. D. Meijere, Angew.
Chem. 2010, 122, 9280; Angew. Chem. Int. Ed. 2010, 49, 9094; c) T.
Vlaar, E. Ruijter, B. U. W. Maes, R. V. A. Orru, Angew. Chem. 2013.
125, 7222; Angew. Chem. Int. Ed. 2013, 52, 7084; d) S. Chakrabarty, S.
Choudhary, A. Doshi, F.-Q. Liu, R. Mohan, M. P. Ravindra, D. Shah, X.
Yang, F. F. Fleming, Adv. Synth. Catal. 2014, 356, 2135; e) V. P.
Boyarskiy, N. A. Bokach, K. V. Luzyanin, V. Y. Kukushkin, Chem. Rev.
2015, 115, 2698; f) B. Zhang, A. Studer, Chem. Soc. Rev. 2015, 44,
3505; g) X. Y. Sun, S. Y. Yu, Synlett 2016, 27, 2659.
[2] a) C. Kanazawa, S. Kamijo, Y. Yamamoto, J. Am. Chem. Soc. 2006,
128, 10663; b) T. Buyck, Q. Wang, J. P. Zhu, J. Am. Chem. Soc. 2014,
136, 11524; c) Z. Y. Hu, Y. F. Li, L. Pan, X. X. Xu, Adv. Synth. Catal.
2014, 356, 2974; d) M. Phanindrudu, D. K. Tiwari, B. Sridhar, P. R.
Likhara, D. K. Tiwari, Org. Chem. Front. 2016, 3, 795.
Scheme 3. Further transformations of the obtained products 2.
The formal [3+1] cyclization reaction could also be carried
out on larger scale as illustrated in Scheme 4. Using 3.5 mmol
of isocyanophenyl-substituted methylenecyclopropane 1p (940
mg) gave 1,2-dihydrocyclobuta[b]quinoline derivative 2p in 84%
yield (790 mg) under the standard conditions.
[3] a) G. S. Qiu, J. Wu, Chem. Commun. 2012, 48, 6046; b) Z. Y. Hu, J. H.
Dong, Y. Men, Z. C. Lin, J. X. Cai, X. X. Xu, Angew. Chem. 2017, 129,
1831; Angew. Chem. Int. Ed. 2017, 56, 1805.
[4] a) M. Tobisu, K. Koh, T. Furukawa, N. Chatani, Angew. Chem. 2012,
124, 11525; Angew. Chem. Int. Ed. 2012, 51, 11363; b) H. Wang, Y. Yu,
X. H. Hong, B. Xu, Chem. Commun. 2014, 50, 13485; c) J. Liu, C. Fan,
H. Y. Yin, C. Qin, G. T. Zhang, X. Zhang, H. Yi, A. W. Lei, Chem.
Commun. 2014, 50, 2145; d) Y. Z. Cheng, X. G. Yuan, H. Jiang, R. Z.
Wang, J. Ma, Y. Zhang, S. Y. Yu, Adv. Synth. Catal. 2014, 356, 2859; e)
K. Tong, T. Y. Zheng, Y. Zhang, S. Y. Yu, Adv. Synth. Catal. 2015, 357,
3681.
[5] a) I. Fernández, F. P. Cossío, M. A. Sierra, Organometallics 2007, 26,
3010; b) F. T. Zhou, K. Ding, Q. Cai, Chem. Eur. J. 2011, 17, 12268.
[6] a) T. Saegusa, N. Taka-ishi, M. Takami, Y. Ito, Synthetic Commun.
1971, 1, 99; b) J. L. Peng, L. Y. Liu, Z. W. Hu, J. B. Huang, Z. Qiang,
Chem. Commun. 2012, 48, 3772; c) G. Qiu, Q. P. Ding, J. Wu, Chem.
Soc. Rev. 2013, 42, 5257; d) T.-H. Zhu, X.-P. Xu, J.-J. Cao, T.-Q. Wei,
S.-Y Wang, S.-J. Ji, Adv. Synth. Catal. 2014, 356, 509; e) T. -H. Zhu, S.-
Y. Wang, T.-Q. Wei, S.-J. Ji, Adv. Synth. Catal. 2015 , 357, 823.
[7] a) G. Hope, B. Lunge, Angew. Chem. Int. Ed. 1977, 16, 727; b) Z. Y.
Hu, H. Y. Yuan, Y. Men, Q. Liu, J. P. Zhang, X. X. Xu, Angew. Chem.
2016, 128, 7193; Angew. Chem. Int. Ed. 2016, 55, 7077.
[8] a) S. Kamijo, T. Jin, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123,
9453; b) M. Tobisu, S. Imoto, S. Ito, N. Chatani, J. Org. Chem. 2010, 75,
4835; c) Y. Fukumoto, M. Hagihara, F. Kinashi, N. Chatani, J. Am.
Chem. Soc. 2011, 133, 10014; d) T. Nanjo, C. Tsukano, Y. Takemoto,
Org. Lett. 2012, 14, 4270; e) S. Lang, Chem. Soc. Rev. 2013, 42, 4867; f)
Y. Odabachian, S. Tong, Q. Wang, M.-X. Wang, J. P. Zhu, Angew.
Chem. 2013, 125, 11078; Angew. Chem. Int. Ed. 2013, 52, 10878; g) X.
M. Huang, S. G. Xu, Q. T. Tan, M. C. Gao, M. J. Lia, B. Xu, Chem.
Commun. 2014, 50, 1465; h) Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang,
H.-X. Dai, J.-Q. Yu, Nature 2014, 515, 389; i) W. Y. Hao, J. Tian, W.
Li, R. Shi, Z. L. Huang, A. W. Lei, Chem. Asian J. 2016, 11, 1664; j) J.
Kim, S. H. Hong, Chem. Sci. 2017, 8, 2401.
[9] a) S. G. Xu, X. M. Huang, X. H. Hong, B. Xu, Org. Lett. 2012, 14,
4614; b) G. Qiu, X. C. Qiu, J. Wu, Adv. Synth. Catal. 2013, 355, 3205.
[10] V. S. Korotkov, O. V. Larionov, A. de Meijere, Synthesis 2006, 3542.
[11] a) Multi-component reactions, J. P. Zhu, H. Bienaym, Wiley-VCH:
Weinheim, 2005; b) A. Domling, Chem. Rev. 2006, 106, 17; c) E.
Ruijter, R. Scheffelaar, R. V. A. Orru, Angew. Chem. 2011, 123, 6358;
Angew. Chem. Int. Ed. 2011, 50, 6234; d) N. Kielland, E. Vicente-
Scheme 4. A scale-up reaction of 1p for the synthesis of 2p.
In conclusion, we have developed a novel formal [3+1]
cyclization
reaction
of
isocyanophenyl-substituted
methylenecyclopropanes upon heating in the presence of Ag2CO3
(5 mol%) via the formal insertion of isocyanide carbon into a C-C
bond, affording diversified 1,2-dihydrocyclobuta[b]quinoline
derivatives. The reaction proceeds efficiently through an excellent
atom economic manner and exhibits broad substrate scope under
convenient conditions, giving the desired products in moderate to
excellent yields. Several useful transformations of the
corresponding products have been also demonstrated in this
context. The potential utilization and further investigation of the
reaction mechanism is in progress.
Experimental Section
General Procedure for Synthesis of 2
A 10 mL flame-vacuum dried screwed-tube equipped with a
magnetic stirring bar was charged with 1 (0.2 mmol, 1.0 equiv),
Ag2CO3 (0.01 mmol, 0.05 equiv) and 1,4-dioxane (2.0 mL) under
o
argon atmosphere. The reaction mixture was stirred at 120 C for
8-24 hours in a pre-heated oil bath. After the starting material 1
was consumed completely (using TLC to monitor the reaction
proceeding), the reaction mixture was cooled to ambient
temperature. Then, organic solvent was removed under reduced
pressure and the resulting residue was purified through a silica-gel
column chromatography to provide the desired product.
4
This article is protected by copyright. All rights reserved.